summaryrefslogtreecommitdiff
path: root/poster_aps_mm_2020.tex
blob: 7451fff7697f4fb22f23a6093e343b90a8d1f918 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
%
%  poster_05.2014.tex - description
%
%  Created by  on Tue May 13 12:26:55 PDT 2014.
%  Copyright (c) 2014 pants productions. All rights reserved.
%
\documentclass[portrait]{a0poster}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[]{amsmath}
\usepackage{amssymb,latexsym,mathtools,multicol,lipsum,wrapfig}
\usepackage[font=normalsize,labelfont=bf]{caption}
\usepackage{tgheros}
\usepackage[helvet]{sfmath}
\usepackage[export]{adjustbox}
\renewcommand*\familydefault{\sfdefault}

\mathtoolsset{showonlyrefs=true}


\setlength\textwidth{194pc}
\begin{document}

\setlength\columnseprule{2pt}
\setlength\columnsep{5pc}
\renewenvironment{figure}
  {\par\medskip\noindent\minipage{\linewidth}}
    {\endminipage\par\medskip}

    \renewcommand\section[1]{
    \vspace{3pc}
    \noindent\huge\textbf{#1}\large
    \vspace{1.5pc}
  }

  \newcommand\unit[1]{\hat{\vec{#1}}}
  \renewcommand\vec[1]{\boldsymbol{\mathbf{#1}}}
  \newcommand\norm[1]{\|#1\|}
  \def\rr{\rho}
  \newcommand\abs[1]{|#1|}
  \def\dd{\mathrm d}
  \def\rec{\mathrm{rec}}
\def\CC{{C\kern-.05em\lower-.4ex\hbox{\cpp +\kern-0.05em+}} }
\font\cpp=cmr24
\def\max{\mathrm{max}}

  \noindent\hspace{177pc}\includegraphics[width=18pc]{CULogo-red120px.eps}
  \vspace{-24.5pc}\\
  \Huge \textbf{Elastic properties of hidden order in URu$_{\text2}$Si$_{\text2}$ are reproduced by\\ staggered nematic order}
  \bigskip\\
  \huge \textbf{Jaron~Kent-Dobias, Michael Matty \& Brad J Ramshaw}
  \vspace{1pc}


  \begin{multicols}{2}

    \section{Introduction}
    \Large

    \begin{wrapfigure}{r}{.25\textwidth}
      \centering
      %\includegraphics[width=0.25\textwidth]{imgs/crack.jpg}
      \caption{Cracking in concrete.}
    \end{wrapfigure}

    Understanding material cracking and fracture is necessary for
    understanding the aging and failure of those materials in our buildings
    and infrastructure.  In ordinary brittle materials like glass, stress at
    the tip of a crack causes it to quickly and cleanly propagate through the
    material.  In ductile materials like metals, this stress is reduced by
    plastic deformation around the crack tip, forming the crack's
    \textbf{process zone}.  In quasi- (or disordered) brittle materials like
    concrete, this stress is reduced by opening a complicated network of
    microcracks in the process zone.  This makes the structure of the
    quasibrittle process zone and crack propagation
    difficult to study by ordinary means.


    \section{Fuse Networks}

    \begin{wrapfigure}{l}{.25\textwidth}
      \centering
      %\includegraphics[width=0.12\textwidth]{imgs/square_network.pdf}
      %\includegraphics[width=0.12\textwidth]{imgs/square_high_beta.pdf}\\
      %\includegraphics[width=0.12\textwidth]{imgs/voronoi_network.pdf}
      %\includegraphics[width=0.12\textwidth]{imgs/voronoi_high_beta.pdf}
      \captionof{figure}{Contrasting the square (top) and voronoi (bottom) networks.  {\bf Left:} Unbroken fuse networks. {\bf Right:} A
    fracture surface in each at low disorder ($\beta=10$).}
      \label{nets}
    \end{wrapfigure}

    \Large

    We model quasibrittle cracking and fracture using simulations of fuse
    networks, which are electrical systems of resistive fuses whose random
    current thresholds $t$ are cumulatively distributed by $t^\beta$.  $\beta$
    parameterizes the amount of disorder in the system: large
    $\beta$ corresponds to vanishing disorder, small $\beta$ to very large
    disorder.  Fracture is performed adiabatically: the fuse whose ratio of
    current to threshold is largest breaks, and the current across the
    networks is recomputed.  In order to reduce lattice effects, which become large for
    small disorder (see Figure \ref{nets}), we use voronoi meshes for our fuse networks.


    \section{Homogeneous Scaling}

    \begin{wrapfigure}{r}{0.25\textwidth}
      \centering
      %\includegraphics[width=0.25\textwidth]{imgs/ashivni.png}
      \captionof{figure}{The `phase diagram' for fracture in homogeneous
      systems.}
      \label{ashivni}
    \end{wrapfigure}

    \Large

    The problem of fracture in fuse networks was unresolved until recently.
    For low disorder, fracture is nucleation-like, similar to that of ordinary
    brittle systems.  At large disorder, fracture occurs after a very large
    amount of uncorrelated damage, and appears percolation-like.
    Sethna and Shekhawat developed a theory which unifies these behaviors with
    an {\sc rg} crossover at intermediate disorder characterized by mean-field
    avalanches.  The percolation-like behavior at high disorder was shown to
    be unstable under course-graining, and therefore any nonzero $\beta$
    will cause nucleated fracture at a sufficiently large system size (see
    Figure \ref{ashivni}).

    In unpublished work, Shekhawat and Sethna found a scaling form for the
    distribution of network strengths $\sigma_\max$, the largest current
    applied to the network before it has broken.  It is given by
    \begin{equation}
      P(\sigma_\max\mid\beta, L,u)=\sigma_\max^{-\tau_\sigma}\mathcal P(\beta
      L^{1/\nu_f},\sigma_\max L^\delta,uL^{-\Delta/\nu_f})\label{form}
    \end{equation}
    where $\tau_\sigma$, $\nu_f$, $\delta$ and $\Delta$ are universal
    exponents, $L$ is the system size, and $u$ is an irrelevant scaling
    variable.  

    \begin{figure}
      \vspace{1pc}
      \centering
      %\includegraphics[width=0.325\textwidth]{imgs/voronoi_homo_big.pdf}
      %\includegraphics[width=0.325\textwidth]{imgs/voronoi_homo_med.pdf}
      %\includegraphics[width=0.325\textwidth]{imgs/voronoi_homo_lit.pdf}\\
      \begin{minipage}[c]{0.325\textwidth}\centering$\pmb{\beta=3}$\end{minipage}
      \begin{minipage}[c]{0.325\textwidth}\centering$\pmb{\beta=0.5}$\end{minipage}
      \begin{minipage}[c]{0.325\textwidth}\centering$\pmb{\beta=0.03}$\end{minipage}\\
      \captionof{figure}{Fractured fuse networks at various $\beta$.  Each colored region shows a
        contiguous cracked cluster.  The black region shows the surface of
        the spanning crack.}
      \label{homo}
      \vspace{1pc}
    \end{figure}


    \section{Scaling in the Process Zone}

    \begin{figure}
      \centering
      %\includegraphics[width=0.245\textwidth]{imgs/sample_16.pdf}
      %\includegraphics[width=0.245\textwidth]{imgs/sample_32.pdf}
      %\includegraphics[width=0.245\textwidth]{imgs/sample_64.pdf}
      %\includegraphics[width=0.245\textwidth]{imgs/sample_128.pdf}\\
      \begin{minipage}[c]{0.245\textwidth}\centering$\pmb{L=16,\;\beta=1.9}$\end{minipage}
      \begin{minipage}[c]{0.245\textwidth}\centering$\pmb{L=32,\;\beta=1.2}$\end{minipage}
      \begin{minipage}[c]{0.245\textwidth}\centering$\pmb{L=64,\;\beta=0.78}$\end{minipage}
      \begin{minipage}[c]{0.245\textwidth}\centering$\pmb{L=128,\;\beta=0.5}$\end{minipage}\\
      \captionof{figure}{Notched fuse networks at critical stress.  The
        disorder for each system is tuned so that $\beta L^{1/\nu_f}$ is
      constant, and the statistics of each should scale trivially.}
      \vspace{1pc}
      \label{notches}
    \end{figure}

    \Large
    We have made progress for developing a scaling theory of damage and stress
    in the process zone of quasibrittle cracks.  We have essentially taken the
    scaling behavior of \eqref{form} as an ansatz for how the corresponding
    qualities of a critically semi-cracked network should scale.  We have
    begun demonstrating the validity of this theory.  Figure \ref{notches}
    shows critically cracked networks at constant $\beta L^{1/\nu_f}$, an
    invariant scaling combination under this theory.  As can be seen in Figure
    \ref{collapse}, the disorder-averaged stress profiles caused by each
    collapses nicely.

    \begin{figure}
      \centering
      %\includegraphics[width=0.5\textwidth]{imgs/legends.pdf}\\
      \vspace{-.5em}
      %\includegraphics[width=0.505\textwidth,valign=t]{imgs/sample_collapse_1.pdf}\hfill
      %\includegraphics[width=0.48\textwidth,valign=t]{imgs/sample_collapse_2.pdf}\\
      \vspace{-.5em}

      \captionof{figure}{Disorder-averaged stress $\sigma$ as a function of
        distance $x$ from the tip of a critical crack.  $\beta L^{1/\nu_f}$ is
        constant for each curve.  \textbf{Left:} The unmodified stress.
        \textbf{Right:} The stress collapsed.}
      \label{collapse}
    \end{figure}

    \section{Next Steps}

    \begin{wrapfigure}{r}{0.25\textwidth}
      \centering
      \vspace{-2em}
      %\includegraphics[width=.25\textwidth]{imgs/voronoi_heir.pdf}
      \captionof{figure}{A hierarchical voronoi lattice.}
    \end{wrapfigure}

    \Large

    The voronoi networks we are able to generate allow us great flexibility
    for future multiscale computational modelling.  Once we have hashed out
    our scaling theory more thoroughly, we plan on using it to probe much
    larger systems than previously feasible using networks whose fuse density
    becomes smaller in regions of less importance.  This should allow us to
    see cleaner stress and damage scaling and cleanly stitch our discrete system to a
    continuum approximation.

  \end{multicols}
\end{document}