summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2024-04-21 14:46:08 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2024-04-21 14:46:08 +0200
commitb69ff6295aacc7853afdd381cf66d51c9b1375b0 (patch)
treef2a6042ebe510fb6a746903f62924d898242dd2a
parente468f5893425e8fc5b076739a8ce6a9d92528efa (diff)
downloadcode-b69ff6295aacc7853afdd381cf66d51c9b1375b0.tar.gz
code-b69ff6295aacc7853afdd381cf66d51c9b1375b0.tar.bz2
code-b69ff6295aacc7853afdd381cf66d51c9b1375b0.zip
Improved gradient descent, removed unused code, fixed bug in printing results.
-rw-r--r--least_squares.cpp82
1 files changed, 31 insertions, 51 deletions
diff --git a/least_squares.cpp b/least_squares.cpp
index c0134d8..faf4ee7 100644
--- a/least_squares.cpp
+++ b/least_squares.cpp
@@ -113,70 +113,50 @@ public:
return {H, ∇H};
}
- std::tuple<Real, Vector, Matrix> getHamGradHess(const Vector& x) const {
+ Matrix getHess(const Vector& x) const {
auto [H, ∂H, ∂∂H] = H_∂H_∂∂H(x);
- Vector ∇H = makeTangent(∂H, x);
- Matrix HessH = ∂∂H + (2 * x - (∂H + ∂∂H * x) / N) * x.transpose()
- - (x.dot(∂H) / N) * Matrix::Identity(N, N);
+ Matrix P = Matrix::Identity(N, N) - x * x.transpose() / x.squaredNorm();
+ Matrix HessH = P * ∂∂H * P.transpose() - (x.dot(∂H) / N) * Matrix::Identity(N, N);
- return {H, ∇H, HessH};
+ return HessH;
}
Vector spectrum(const Vector& x) const {
- Matrix hessH;
- std::tie(std::ignore, std::ignore, hessH) = getHamGradHess(x);
- Eigen::EigenSolver<Matrix> eigenS(hessH);
+ Matrix HessH = getHess(x);
+ Eigen::EigenSolver<Matrix> eigenS(HessH);
return eigenS.eigenvalues().real();
}
+
+ Real maximumEigenvalue(const Vector& x) const {
+ return spectrum(x).maxCoeff();
+ }
};
-Vector gradientDescent(const QuadraticModel& M, const Vector& x0, Real ε = 1e-7) {
+Vector gradientDescent(const QuadraticModel& M, const Vector& x0, Real ε = 1e-13) {
Vector x = x0;
- Real λ = 10;
-
- auto [H, ∇H] = M.getHamGrad(x);
-
- while (∇H.norm() / M.N > ε && λ > ε) {
+ Real α = 1;
+ Real m, H;
+ Vector ∇H;
+
+ while (
+ std::tie(H, ∇H) = M.getHamGrad(x),
+ m = ∇H.squaredNorm(),
+ m / M.N > ε
+ ) {
Real HNew;
- Vector xNew, gNew;
+ Vector xNew;
while(
- xNew = normalize(x + λ * ∇H),
+ xNew = normalize(x + α * ∇H),
HNew = M.getHamiltonian(xNew),
- HNew < H && λ > ε
+ HNew < H + 0.5 * α * m
) {
- λ /= 1.5;
+ α /= 2;
}
x = xNew;
- std::tie(H, ∇H) = M.getHamGrad(xNew);
-
- λ *= 2;
- }
-
- return x;
-}
-
-Vector levenbergMarquardt(const QuadraticModel& M, const Vector& x0, Real ε = 1e-5) {
- Vector x = x0;
- Real λ = 100;
-
- auto [H, ∇H, HessH] = M.getHamGradHess(x0);
-
- while (λ * ε < 1) {
- Vector Δx = (HessH - λ * (Matrix)HessH.diagonal().cwiseAbs().asDiagonal()).partialPivLu().solve(∇H);
- Vector xNew = normalize(x - makeTangent(Δx, x));
- Real HNew = M.getHamiltonian(xNew);
-
- if (HNew > H) {
- x = xNew;
- std::tie(H, ∇H, HessH) = M.getHamGradHess(xNew);
-
- λ /= 1.5;
- } else {
- λ *= 1.25;
- }
+ α *= 1.25;
}
return x;
@@ -232,7 +212,7 @@ int main(int argc, char* argv[]) {
}
}
- unsigned M = (unsigned)(α * N);
+ unsigned M = std::round(α * N);
Rng r;
@@ -241,13 +221,13 @@ int main(int argc, char* argv[]) {
for (unsigned sample = 0; sample < samples; sample++) {
QuadraticModel leastSquares(N, M, r, σ, A, J);
- x = gradientDescent(leastSquares, x);
- std::cout << leastSquares.getHamiltonian(x) / N;
+ Vector xGD = gradientDescent(leastSquares, x);
+ std::cout << leastSquares.getHamiltonian(xGD) / N << " " << leastSquares.maximumEigenvalue(xGD) << " ";
leastSquares = QuadraticModel(N, M, r, σ, A, J);
- x = subagAlgorithm(leastSquares, r, N);
- x = gradientDescent(leastSquares, x);
- std::cout << " " << leastSquares.getHamiltonian(x) / N << std::endl;
+ Vector xMP = subagAlgorithm(leastSquares, r, N);
+ xMP = gradientDescent(leastSquares, xMP);
+ std::cout << leastSquares.getHamiltonian(xMP) / N << " " << leastSquares.maximumEigenvalue(xMP) << std::endl;
}
return 0;