diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-08-02 10:35:18 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-08-02 10:35:18 +0200 |
commit | 0277238fb24804b04a08934608ab262cb12339a9 (patch) | |
tree | 77aeb7f391d4a01b39efb0879e75ad6a09f34d17 | |
parent | 6e563ea56e0bf01bc1440e9b4ea22489a8ec2369 (diff) | |
download | SciPostPhys_18_158-0277238fb24804b04a08934608ab262cb12339a9.tar.gz SciPostPhys_18_158-0277238fb24804b04a08934608ab262cb12339a9.tar.bz2 SciPostPhys_18_158-0277238fb24804b04a08934608ab262cb12339a9.zip |
Some fixing.
-rw-r--r-- | topology.tex | 36 |
1 files changed, 30 insertions, 6 deletions
diff --git a/topology.tex b/topology.tex index 89692b7..097c5a4 100644 --- a/topology.tex +++ b/topology.tex @@ -298,9 +298,9 @@ solution manifold. \includegraphics{figs/bar.pdf} \caption{ - Cartoon of the topology of the CCSP solution manifold implied by our + Cartoon of the topology of the solution manifold implied by our calculation. The arrow shows the vector $\mathbf x_0$ defining the height - function. The region of solutions is shaded orange, and the critical points + function. The region of solutions is marked in black, and the critical points of the height function restricted to this region are marked with a point. For $\alpha<1$, there are few simply connected regions with most of the minima and maxima contributing to the Euler characteristic concentrated at @@ -371,15 +371,39 @@ consistent with the full RSB calculation of \cite{Urbani_2023_A}. &\quad-\frac\alpha2\log\det\big[I+\hat\beta\big(R\odot f'(C)\big)^{-1}f(C)\big] \end{align} +The quenched average of the Euler characteristic in the replica symmetric ansatz becomes for $1<\alpha<\alpha_\text{\textsc{sat}}$ \begin{align} - \mathcal S_0(m,r_d) + \frac1N\overline{\log\chi} =\frac12\bigg[ - -m(m+r_d)+\log\left(-\frac m{r_d}\right) \notag \\ + \log\left(-\frac 1{\tilde r_d}\right) -\alpha\log\left( - \frac{-m\big(f(1)-f(0)\big)+r_d\big(f'(1)-f(1)+f(0)\big)}{r_df'(1)} + 1-\Delta f\frac{1+\tilde r_d}{f'(1)\tilde r_d} \right) \notag \\ - +\frac{\alpha f(0)(m+r_d)}{-m\big(f(1)-f(0)\big)+r_d\big(f'(1)-f(1)+f(0)\big)} + -\alpha f(0)\left(\Delta f-\frac{f'(1)\tilde r_d}{1+\tilde r_d}\right)^{-1} \bigg] \end{align} +where $\Delta f=f(1)-f(0)$ and $\tilde r_d$ is given by +\begin{align} + \tilde r_d + =-\frac{f'(1)f(1)-\Delta f^2}{2(f'(1)-\Delta f)^2} + \bigg( + \alpha-2+\frac{2f'(1)f(0)}{f'(1)f(1)-\Delta f^2} \notag\\ + +\sqrt{ + \alpha^2 + -4\alpha\frac{f'(1)f(0)\Delta f\big(f'(1)-\Delta f\big)}{\big(f'(1)f(1)-\Delta f^2\big)^2} + } + \bigg) +\end{align} +When $\alpha\to\alpha_\text{\textsc{sat}}=f'(1)/f(1)$ from below, $\tilde r_d\to -1$, which produces $N^{-1}\overline{\log\chi}\to0$. + +\begin{figure} + \includegraphics{figs/quenched.pdf} + + \caption{ + Comparison of the annealed and replica symmetric quenched calculations of + the logarithmic of the Euler characteristic. The covariance function is + $f(q)=\frac12+\frac12q^3$ and $\alpha_\text{\textsc{sat}}=\frac32$. + } +\end{figure} \end{document} |