summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2024-08-02 10:35:18 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2024-08-02 10:35:18 +0200
commit0277238fb24804b04a08934608ab262cb12339a9 (patch)
tree77aeb7f391d4a01b39efb0879e75ad6a09f34d17
parent6e563ea56e0bf01bc1440e9b4ea22489a8ec2369 (diff)
downloadSciPostPhys_18_158-0277238fb24804b04a08934608ab262cb12339a9.tar.gz
SciPostPhys_18_158-0277238fb24804b04a08934608ab262cb12339a9.tar.bz2
SciPostPhys_18_158-0277238fb24804b04a08934608ab262cb12339a9.zip
Some fixing.
-rw-r--r--topology.tex36
1 files changed, 30 insertions, 6 deletions
diff --git a/topology.tex b/topology.tex
index 89692b7..097c5a4 100644
--- a/topology.tex
+++ b/topology.tex
@@ -298,9 +298,9 @@ solution manifold.
\includegraphics{figs/bar.pdf}
\caption{
- Cartoon of the topology of the CCSP solution manifold implied by our
+ Cartoon of the topology of the solution manifold implied by our
calculation. The arrow shows the vector $\mathbf x_0$ defining the height
- function. The region of solutions is shaded orange, and the critical points
+ function. The region of solutions is marked in black, and the critical points
of the height function restricted to this region are marked with a point.
For $\alpha<1$, there are few simply connected regions with most of the
minima and maxima contributing to the Euler characteristic concentrated at
@@ -371,15 +371,39 @@ consistent with the full RSB calculation of \cite{Urbani_2023_A}.
&\quad-\frac\alpha2\log\det\big[I+\hat\beta\big(R\odot f'(C)\big)^{-1}f(C)\big]
\end{align}
+The quenched average of the Euler characteristic in the replica symmetric ansatz becomes for $1<\alpha<\alpha_\text{\textsc{sat}}$
\begin{align}
- \mathcal S_0(m,r_d)
+ \frac1N\overline{\log\chi}
=\frac12\bigg[
- -m(m+r_d)+\log\left(-\frac m{r_d}\right) \notag \\
+ \log\left(-\frac 1{\tilde r_d}\right)
-\alpha\log\left(
- \frac{-m\big(f(1)-f(0)\big)+r_d\big(f'(1)-f(1)+f(0)\big)}{r_df'(1)}
+ 1-\Delta f\frac{1+\tilde r_d}{f'(1)\tilde r_d}
\right) \notag \\
- +\frac{\alpha f(0)(m+r_d)}{-m\big(f(1)-f(0)\big)+r_d\big(f'(1)-f(1)+f(0)\big)}
+ -\alpha f(0)\left(\Delta f-\frac{f'(1)\tilde r_d}{1+\tilde r_d}\right)^{-1}
\bigg]
\end{align}
+where $\Delta f=f(1)-f(0)$ and $\tilde r_d$ is given by
+\begin{align}
+ \tilde r_d
+ =-\frac{f'(1)f(1)-\Delta f^2}{2(f'(1)-\Delta f)^2}
+ \bigg(
+ \alpha-2+\frac{2f'(1)f(0)}{f'(1)f(1)-\Delta f^2} \notag\\
+ +\sqrt{
+ \alpha^2
+ -4\alpha\frac{f'(1)f(0)\Delta f\big(f'(1)-\Delta f\big)}{\big(f'(1)f(1)-\Delta f^2\big)^2}
+ }
+ \bigg)
+\end{align}
+When $\alpha\to\alpha_\text{\textsc{sat}}=f'(1)/f(1)$ from below, $\tilde r_d\to -1$, which produces $N^{-1}\overline{\log\chi}\to0$.
+
+\begin{figure}
+ \includegraphics{figs/quenched.pdf}
+
+ \caption{
+ Comparison of the annealed and replica symmetric quenched calculations of
+ the logarithmic of the Euler characteristic. The covariance function is
+ $f(q)=\frac12+\frac12q^3$ and $\alpha_\text{\textsc{sat}}=\frac32$.
+ }
+\end{figure}
\end{document}