diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-09-04 02:32:57 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-09-04 02:32:57 +0200 |
commit | 2f17fb311918383785ab053eb73e83be803ec8ae (patch) | |
tree | eb17ce7c0b17eaeb6a55bc1eb66e374328680e3e | |
parent | 032584fe152ca1e91d0d8152e063b447211ff636 (diff) | |
download | SciPostPhys_18_158-2f17fb311918383785ab053eb73e83be803ec8ae.tar.gz SciPostPhys_18_158-2f17fb311918383785ab053eb73e83be803ec8ae.tar.bz2 SciPostPhys_18_158-2f17fb311918383785ab053eb73e83be803ec8ae.zip |
More work.
-rw-r--r-- | topology.tex | 79 |
1 files changed, 46 insertions, 33 deletions
diff --git a/topology.tex b/topology.tex index 884796c..9d0428a 100644 --- a/topology.tex +++ b/topology.tex @@ -277,7 +277,7 @@ form =\left(\frac N{2\pi}\right)^2\int dR\,dD\,dm\,d\hat m\,g(R,D,m,\hat m)\,e^{N\mathcal S_\Omega(R,D,m,\hat m)} \end{equation} where $g$ is a prefactor of $o(N^0)$, and $\mathcal S_\Omega$ is an effective action defined by -\begin{equation} +\begin{equation} \label{eq:euler.action} \begin{aligned} \mathcal S_\Omega(R,D,m,\hat m\mid\alpha,V_0) &=\hat m-\frac\alpha2\left[ @@ -428,12 +428,12 @@ around the determinant of the Hessian. Understanding the number of stationary points as a function of latitude $m$ will clarify the meaning of our effective action for the average Euler -characteristic. This is because the average number of stationary points is a +characteristic in the range of overlaps $m$ where it takes a complex value. This is because the average number of stationary points is a nonnegative number. If the region of complex $\mathcal S_\Omega$ has a well-defined number of stationary points, it indicates that we are looking at a situation with a negative average Euler characteristic. On the other hand, if the average number of stationary points yields a complex value at some latitude -$m$, it must be because it is either to large or small in $N$ to be captured by +$m$, it must be because it is either too large or small in $N$ to be captured by the calculation, e.g., that it behaves like $e^{N^2\Sigma}$ or $e^{-N^2\Sigma}$. The following calculation indicates this second situation: the region of complex action is due to a lack of stationary points to @@ -620,7 +620,6 @@ realizations of the functions $V_k$ the set $\Omega$ is empty. \section{Implications for dynamic thresholds in the spherical spin glasses} -\cite{Folena_2020_Rethinking, Folena_2021_Gradient} As indicated earlier, for $M=1$ the solution manifold corresponds to the energy level set of a spherical spin glass with energy density $E=\sqrt NV_0$. All the @@ -644,7 +643,20 @@ However, for general mixed models the threshold energy is \begin{equation} E_\mathrm{th}=\pm\frac{f(1)[f''(1)-f'(1)]+f'(1)^2}{f'(1)\sqrt{f''(1)}} \end{equation} -which generally satisfies $|E_\text{shatter}|\leq|E_\text{th}|$. +which satisfies $|E_\text{shatter}|\leq|E_\text{th}|$. Therefore, as one +descends in energy in generic models one will meet the shattering energy before +the threshold energy. This is perhaps unexpected, since one wight imagine that +where level sets of the energy break into many pieces would coincide with the +largest concentration of shallow minima in the landscape. We see here that this isn't the case. + +This fact mirrors another another that was made clear +recently: when gradient decent dynamics are run on these models, they will +asymptotically reach an energy above the threshold energy +\cite{Folena_2020_Rethinking, Folena_2021_Gradient, Folena_2023_On}. The old +belief that the threshold energy qualitatively coincides with a kind of +shattering is the origin of the expectation that the dynamic limit should be +the threshold energy. Given that our work shows the actual shattering energy is +different, here we compare it with data on the asymptotic limits of dynamics to see if they coincide. \begin{figure} \includegraphics{figs/dynamics_2.pdf} @@ -671,7 +683,9 @@ which generally satisfies $|E_\text{shatter}|\leq|E_\text{th}|$. \cite{Franz_2016_The, Franz_2017_Universality, Franz_2019_Critical, Annesi_2023_Star-shaped, Baldassi_2023_Typical} \paragraph{Acknowledgements} -The authors thank Pierfrancesco Urbani for helpful conversations on these topics. +The authors thank Pierfrancesco Urbani for helpful conversations on these +topics, and Giampaolo Folena for supplying his \textsc{dmft} data for the +spherical spin glasses. \paragraph{Funding information} JK-D is supported by a \textsc{DynSysMath} Specific Initiative of the INFN. @@ -831,29 +845,28 @@ We can treat the integral over $\sigma_0$ immediately. It gives \end{equation} This therefore sets $C=1$ and $G=-R$ in the remainder of the integrand, as well as removing all dependence on $\bar H$ and $H$. With these solutions inserted, the remaining terms in the exponential give -\begin{equation} \label{eq:sdet.q} - \begin{aligned} - \operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T) - &=1+\frac{(1-m^2)D+\hat m^2-2Rm\hat m}{R^2} - -\frac6{R^4}\bar H_0H_0\bar{\hat H}\hat H - \\ - &\qquad+\frac2{R^3}\left[ - (mR-\hat m)(\bar{\hat H}H_0+\bar H_0\hat H) - -(D+R^2)\bar H_0H_0 - +(1-m^2)\bar{\hat H}\hat H - \right] - \end{aligned} -\end{equation} -\begin{equation} \label{eq:sdet.fq} - \operatorname{sdet}f(\mathbb Q) +\begin{align} \label{eq:sdet.q} + &\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T) + =1+\frac{(1-m^2)D+\hat m^2-2Rm\hat m}{R^2} + -\frac6{R^4}\bar H_0H_0\bar{\hat H}\hat H + \\ + &\hspace{5pc}+\frac2{R^3}\left[ + (mR-\hat m)(\bar{\hat H}H_0+\bar H_0\hat H) + -(D+R^2)\bar H_0H_0 + +(1-m^2)\bar{\hat H}\hat H + \right] \notag + \\ \label{eq:sdet.fq} + &\operatorname{sdet}f(\mathbb Q) =1+\frac{Df(1)}{R^2f'(1)} +\frac{2f(1)}{R^3f'(1)}\bar{\hat H}\hat H -\end{equation} -\begin{equation} \label{eq:inv.q} - \int d1\,d2\,f(\mathbb Q)^{-1}(1,2) + \\ \label{eq:inv.q} + &\int d1\,d2\,f(\mathbb Q)^{-1}(1,2) =\left(f(1)+\frac{R^2f'(1)}{D}\right)^{-1} +2\frac{Rf'(1)}{(Df(1)+R^2f'(1))^2}\bar{\hat H}\hat H -\end{equation} +\end{align} +The Grassmann terms in these expressions do not contribute to the effective +action, but will be important in our derivation of the prefactor for the +calculation in the connected regime. The substitution of these expressions into \eqref{eq:post.hubbard-strat} without the Grassmann terms yields \eqref{eq:euler.action} from the main text. \section{Calculation of the prefactor of the average Euler characteristic} \label{sec:prefactor} @@ -864,7 +877,7 @@ superspace measure, super-Gaussian integrals do not produce such factors in our derivation. Prefactors to our calculation come from three sources: the introduction of $\delta$-functions to define the order parameters, integrals over Grassmann order parameters, and from the saddle point approximation to the -large-$N$ integral. +large-$N$ integral. In addition, there are important contributions of a sign of the magnetization at the solution that arise from our super-Gaussian integrations. \subsection{Contribution from the Hubbard--Stratonovich transformations} \label{sec:prefactor.hs} @@ -880,7 +893,7 @@ where three factors of $2\pi$ come from the measures as defined in integral yields \begin{equation} \begin{aligned} - 1=\int d\mathbb Q\,d\mathbb M\,d\tilde{\mathbb Q}\,d\tilde{\mathbb M}\, + 1=\frac12\int d\mathbb Q\,d\mathbb M\,d\tilde{\mathbb Q}\,d\tilde{\mathbb M}\, \exp\Bigg\{ \frac12\int d1\,d2\,\tilde{\mathbb Q}(1,2)\big(N\mathbb Q(1,2)-\pmb\phi(1)\cdot\pmb\phi(2)\big) \qquad \\ +\int d1\,i\tilde{\mathbb M}(1)\big(N\mathbb M(1)-\mathbf x_0\cdot\pmb\phi(1)\big) @@ -891,10 +904,10 @@ where the supervectors and measures for $\tilde{\mathbb Q}$ and $\tilde{\mathbb analogously to those of $\mathbb Q$ and $\mathbb M$. This is now a super-Gaussian integral in $\pmb\phi$, which can be performed to yield \begin{equation} \begin{aligned} - \int d\pmb\phi\,1=\int d\mathbb Q\,d\mathbb M\,d\tilde{\mathbb Q}\,d\tilde{\mathbb M}\, + \int d\pmb\phi\,1=\frac12\int d\mathbb Q\,d\mathbb M\,d\tilde{\mathbb Q}\,d\tilde{\mathbb M}\, \exp\Bigg\{ \frac N2\int d1\,d2\,\tilde{\mathbb Q}(1,2)\mathbb Q(1,2) - +N\int d1\,i\tilde{\mathbb M}(1)\mathbb M(1) \qquad \\ + +N\int d1\,i\tilde{\mathbb M}(1)\mathbb M(1) \quad \\ -\frac N2\log\operatorname{sdet}\tilde{\mathbb Q} -\frac N2\int d1\,d2\,\tilde{\mathbb M}(1)\tilde{\mathbb Q}^{-1}(1,2)\tilde{\mathbb M}(2) \Bigg\} @@ -904,7 +917,7 @@ We can perform the remaining Gaussian integral in $\tilde{\mathbb M}$ to find \begin{equation} \begin{aligned} \int d\pmb\phi\,1= - \int d\mathbb Q\,d\mathbb M\,d\tilde{\mathbb Q}\, + \frac12\int d\mathbb Q\,d\mathbb M\,d\tilde{\mathbb Q}\, (\operatorname{sdet}\tilde{\mathbb Q}^{-1})^{-\frac12} \exp\Bigg\{ -\frac N2\log\operatorname{sdet}\tilde{\mathbb Q} @@ -927,10 +940,10 @@ $\frac12\log\det(\mathbb Q-\mathbb M\mathbb M^T)$ in the effective action from \end{equation} The Hubbard--Stratonovich transformation therefore contributes a factor of \begin{equation} - \operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T)^{\frac12} - =[(C-m^2)(D+\hat m^2)+(R-m\hat m)^2]^\frac12G^{-1} + \frac12\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T)^{\frac12} + =\frac12[(C-m^2)(D+\hat m^2)+(R-m\hat m)^2]^\frac12G^{-1} \end{equation} -to the prefactor. +to the prefactor at the largest order in $N$. \subsection{Sign of the prefactor} |