diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-03-07 15:07:44 -0300 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-03-07 15:07:44 -0300 |
commit | 308ce96fef4d14a1be1330e03d4713db753af792 (patch) | |
tree | d807319ad40cf241340d80f1e50835da6d2c986e | |
parent | 24c4d516d81f476d8bfc8b0616b35f69793c0d3c (diff) | |
download | SciPostPhys_18_158-308ce96fef4d14a1be1330e03d4713db753af792.tar.gz SciPostPhys_18_158-308ce96fef4d14a1be1330e03d4713db753af792.tar.bz2 SciPostPhys_18_158-308ce96fef4d14a1be1330e03d4713db753af792.zip |
Change addressing report #3, weakness 5.1.
Added a footnote explaining the use of subscript notation for the
superdeterminant of an operator with more than two indicies.
-rw-r--r-- | referee_response.md | 1 | ||||
-rw-r--r-- | topology.tex | 6 |
2 files changed, 5 insertions, 2 deletions
diff --git a/referee_response.md b/referee_response.md index dac2d57..771f046 100644 --- a/referee_response.md +++ b/referee_response.md @@ -130,4 +130,5 @@ Ask for minor revision * Ok - discuss planting in manuscript, raise skepticism of results of fear paper. 5. Make a supplementary materials file * The manuscript has been modified to clarify where a review of superspace methods can be found in the referenced material. + * The subscript notation associated with the determinant has been explained in a footnote. diff --git a/topology.tex b/topology.tex index 9000b12..2a8eb52 100644 --- a/topology.tex +++ b/topology.tex @@ -1069,12 +1069,14 @@ method. The integrand is stationary at $\tilde{\mathbb Q}=(\mathbb Q-\mathbb M\mathbb M^T)^{-1}$, and substituting this into the above expression results in the term $\frac12\log\det(\mathbb Q-\mathbb M\mathbb M^T)$ in the effective action from \eqref{eq:post.hubbard-strat}. The saddle point also yields a prefactor of the form -\begin{equation} +\begin{equation} \label{eq:supermatrix.saddle} \left(\operatorname{sdet}_{\{1,2\},\{3,4\}}\frac{\partial^2\frac12\log\operatorname{sdet}\tilde{\mathbb Q}}{\partial\tilde{\mathbb Q}(1,2)\partial\tilde{\mathbb Q}(3,4)}\right)^{-\frac12} =\left(\operatorname{sdet}_{\{1,2\},\{3,4\}}\tilde{\mathbb Q}^{-1}(3,1)\tilde{\mathbb Q}^{-1}(2,4)\right)^{-\frac12} =1 \end{equation} -where the final superdeterminant is identically 1 for any superoperator $\tilde{\mathbb Q}$, not just its saddle-point value. +where the final superdeterminant is identically 1 for any superoperator $\tilde{\mathbb Q}$, not just its saddle-point value.\footnote{ + The subscript notation in \eqref{eq:supermatrix.saddle} indicates which superindices of the four-index superoperator associated with the Hessian belong to the domain and codomain, analogous to writing $\det A=\det_{ij}A_{ij}$ for a two-index complex-valued matrix. In this case, the domain is indexed by $\{3,4\}$ and the codomain is indexed by $\{1,2\}$. +} The Hubbard--Stratonovich transformation therefore contributes a factor of \begin{equation} \frac12\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T)^{\frac12} |