summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2025-03-07 15:07:44 -0300
committerJaron Kent-Dobias <jaron@kent-dobias.com>2025-03-07 15:07:44 -0300
commit308ce96fef4d14a1be1330e03d4713db753af792 (patch)
treed807319ad40cf241340d80f1e50835da6d2c986e
parent24c4d516d81f476d8bfc8b0616b35f69793c0d3c (diff)
downloadSciPostPhys_18_158-308ce96fef4d14a1be1330e03d4713db753af792.tar.gz
SciPostPhys_18_158-308ce96fef4d14a1be1330e03d4713db753af792.tar.bz2
SciPostPhys_18_158-308ce96fef4d14a1be1330e03d4713db753af792.zip
Change addressing report #3, weakness 5.1.
Added a footnote explaining the use of subscript notation for the superdeterminant of an operator with more than two indicies.
-rw-r--r--referee_response.md1
-rw-r--r--topology.tex6
2 files changed, 5 insertions, 2 deletions
diff --git a/referee_response.md b/referee_response.md
index dac2d57..771f046 100644
--- a/referee_response.md
+++ b/referee_response.md
@@ -130,4 +130,5 @@ Ask for minor revision
* Ok - discuss planting in manuscript, raise skepticism of results of fear paper.
5. Make a supplementary materials file
* The manuscript has been modified to clarify where a review of superspace methods can be found in the referenced material.
+ * The subscript notation associated with the determinant has been explained in a footnote.
diff --git a/topology.tex b/topology.tex
index 9000b12..2a8eb52 100644
--- a/topology.tex
+++ b/topology.tex
@@ -1069,12 +1069,14 @@ method. The integrand is stationary at $\tilde{\mathbb Q}=(\mathbb Q-\mathbb
M\mathbb M^T)^{-1}$, and substituting this into the above expression results in the term
$\frac12\log\det(\mathbb Q-\mathbb M\mathbb M^T)$ in the effective action from
\eqref{eq:post.hubbard-strat}. The saddle point also yields a prefactor of the form
-\begin{equation}
+\begin{equation} \label{eq:supermatrix.saddle}
\left(\operatorname{sdet}_{\{1,2\},\{3,4\}}\frac{\partial^2\frac12\log\operatorname{sdet}\tilde{\mathbb Q}}{\partial\tilde{\mathbb Q}(1,2)\partial\tilde{\mathbb Q}(3,4)}\right)^{-\frac12}
=\left(\operatorname{sdet}_{\{1,2\},\{3,4\}}\tilde{\mathbb Q}^{-1}(3,1)\tilde{\mathbb Q}^{-1}(2,4)\right)^{-\frac12}
=1
\end{equation}
-where the final superdeterminant is identically 1 for any superoperator $\tilde{\mathbb Q}$, not just its saddle-point value.
+where the final superdeterminant is identically 1 for any superoperator $\tilde{\mathbb Q}$, not just its saddle-point value.\footnote{
+ The subscript notation in \eqref{eq:supermatrix.saddle} indicates which superindices of the four-index superoperator associated with the Hessian belong to the domain and codomain, analogous to writing $\det A=\det_{ij}A_{ij}$ for a two-index complex-valued matrix. In this case, the domain is indexed by $\{3,4\}$ and the codomain is indexed by $\{1,2\}$.
+}
The Hubbard--Stratonovich transformation therefore contributes a factor of
\begin{equation}
\frac12\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T)^{\frac12}