summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2024-09-19 08:50:01 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2024-09-19 08:50:01 +0200
commit43fc2fdf9e74351fdeb8abed136cbbd25ec69eb0 (patch)
tree25324f4c06fcf638a7395d559766277c032340f9
parent7569d4b2ae6e519eab8d3398b804c32c9bb64ad8 (diff)
downloadSciPostPhys_18_158-43fc2fdf9e74351fdeb8abed136cbbd25ec69eb0.tar.gz
SciPostPhys_18_158-43fc2fdf9e74351fdeb8abed136cbbd25ec69eb0.tar.bz2
SciPostPhys_18_158-43fc2fdf9e74351fdeb8abed136cbbd25ec69eb0.zip
Reorganization of more things to the appendix.
-rw-r--r--topology.tex169
1 files changed, 82 insertions, 87 deletions
diff --git a/topology.tex b/topology.tex
index 127b15e..f56a2c7 100644
--- a/topology.tex
+++ b/topology.tex
@@ -271,71 +271,31 @@ The integral over the solution manifold $\Omega$ in \eqref{eq:kac-rice} becomes
\end{equation}
where $\partial=[\frac\partial{\partial\mathbf x},\frac\partial{\partial\pmb\omega}]$
is the vector of partial derivatives with respect to all $N+M+1$ variables.
-This integral is now in a form where standard techniques from the mean-field
-theory of disordered systems can be applied to calculate it.
+This expression is now in a form where standard techniques from the mean-field
+theory of disordered systems can be applied to average over the random constraint functions and evaluate the integrals to leading order in large $N$.
-To evaluate the average of $\chi$ over the random constraints, we first translate the $\delta$-functions and determinant to integral form, with
-\begin{align}
- \label{eq:delta.exp}
- \delta\big(\partial L(\mathbf x,\pmb\omega)\big)
- &=\int\frac{d\hat{\mathbf x}}{(2\pi)^N}\frac{d\hat{\pmb\omega}}{(2\pi)^{M+1}}
- \,e^{i[\hat{\mathbf x},\hat{\pmb\omega}]\cdot\partial L(\mathbf x,\pmb\omega)}
- \\
- \label{eq:det.exp}
- \det\partial\partial L(\mathbf x,\pmb\omega)
- &=\int d\bar{\pmb\eta}\,d\pmb\eta\,d\bar{\pmb\gamma}\,d\pmb\gamma\,
- e^{-[\bar{\pmb\eta},\bar{\pmb\gamma}]^T\partial\partial L(\mathbf x,\pmb\omega)[\pmb\eta,\pmb\gamma]}
-\end{align}
-where $\hat{\mathbf x}$ and $\hat{\pmb\omega}$ are ordinary vectors and
-$\bar{\pmb\eta}$, $\pmb\eta$, $\bar{\pmb\gamma}$, and $\pmb\gamma$ are
-Grassmann vectors. With these expressions substituted into
-\eqref{eq:kac-rice.lagrange}, the result is an integral over an exponential
-whose argument is linear in the random functions $V_k$. These functions can
-therefore be averaged over, and the resulting expression treated with standard
-methods. Details of this calculation can be found in Appendix~\ref{sec:euler}.
-The result is the reduction of the average Euler characteristic to an expression of the
-form
-\begin{equation} \label{eq:pre-saddle.characteristic}
- \overline{\chi(\Omega)}
- =\left(\frac N{2\pi}\right)^2\int dR\,dD\,dm\,d\hat m\,g(R,D,m,\hat m)\,e^{N\mathcal S_\chi(R,D,m,\hat m)}
+Details of this calculation can be found in Appendix~\ref{sec:euler}. The
+result is the reduction of the average Euler characteristic to an integral over
+a single order parameter $m=\frac1N\mathbf x\cdot\mathbf x_0$ of the form
+\begin{equation}
+ \overline{\chi(\Omega)}=\left(\frac{N}{2\pi}\right)^{\frac12}\int dm\,g(m)\,e^{N\mathcal S_\chi(m)}
\end{equation}
-where $g$ is a prefactor of $o(N^0)$, $\mathcal S_\chi$ is an effective action defined by
-\begin{equation} \label{eq:euler.action}
- \begin{aligned}
- \mathcal S_\chi(R,D,m,\hat m)
- &=-\hat m-\frac\alpha2\left[
- \log\left(1+\frac{f(1)D}{f'(1)R^2}\right)
- +\frac{V_0^2}{f(1)}\left(1+\frac{f'(1)R^2}{f(1)D}\right)^{-1}
- \right] \\
- &\hspace{7em}+\frac12\log\left(
- 1+\frac{(1-m^2)D+\hat m^2-2Rm\hat m}{R^2}
+where $g(m)$ is a prefactor of order $N^0$ and $\mathcal S_\chi(m)$ is an
+effective action defined by
+\begin{equation} \label{eq:S.m}
+ \mathcal S_\chi(m)
+ =-\frac\alpha2\bigg[
+ \log\left(
+ 1-\frac{f(1)}{f'(1)}\frac{1+\frac m{R_*}}{1-m^2}
\right)
- \end{aligned}
+ +\frac{V_0^2}{f(1)}\left(
+ 1-\frac{f'(1)}{f(1)}\frac{1-m^2}{1+\frac m{R_*}}
+ \right)^{-1}
+ \bigg]
+ +\frac12\log\left(-\frac m{R_*}\right)
\end{equation}
-and where we have introduced the ratio $\alpha=M/N$.
-The remaining order parameters are defined by the scalar products
-\begin{align}
- R=-i\frac1N\mathbf x\cdot\hat{\mathbf x}
- &&
- D=\frac1N\hat{\mathbf x}\cdot\hat{\mathbf x}
- &&
- m=\frac1N\mathbf x\cdot\mathbf x_0
- &&
- \hat m=-i\frac1N\hat {\mathbf x}\cdot\mathbf x_0
-\end{align}
-between the configurations $\mathbf x$, the auxiliary configurations
-$\hat{\mathbf x}$, and the height axis $\mathbf x_0$.
-The integral \eqref{eq:pre-saddle.characteristic} can be evaluated to leading
-order in $N$ by a saddle point approximation. First we extremize with respect
-to $R$, $D$, and $\hat m$, which take the saddle-point values
-\begin{align}
- R=R^*
- &&
- D=-\frac{m+R_*}{1-m^2}R_*
- &&
- \hat m=0
-\end{align}
-where we have defined
+Here we have introduced the ratio $\alpha=M/N$ between the number of equations
+and the number of variables, and $R_*$ is a function of $m$ given by
\begin{equation} \label{eq:rs}
\begin{aligned}
R_*
@@ -350,28 +310,15 @@ where we have defined
\Bigg]
\end{aligned}
\end{equation}
-Upon substitution of these solutions into \eqref{eq:euler.action}, we find an
-effective action as a function of $m$ alone given by
-\begin{equation} \label{eq:S.m}
- \mathcal S_\chi(m)
- =-\frac\alpha2\bigg[
- \log\left(
- 1-\frac{f(1)}{f'(1)}\frac{1+\frac m{R_*}}{1-m^2}
- \right)
- +\frac{V_0^2}{f(1)}\left(
- 1-\frac{f'(1)}{f(1)}\frac{1-m^2}{1+\frac m{R_*}}
- \right)^{-1}
- \bigg]
- +\frac12\log\left(-\frac m{R_*}\right)
-\end{equation}
-This function is plotted in Fig.~\ref{fig:action} for a
-selection of parameters.
-To finish evaluating the integral, this
-expression should be maximized with respect to $m$. If $m_*$ is such a maximum,
-then the resulting Euler characteristic is $\overline{\chi(\Omega)}\propto
-e^{N\mathcal S_\chi(m_*)}$.
-
-\begin{figure}[tbh]
+This function is plotted in Fig.~\ref{fig:action} for a selection of
+parameters. To finish evaluating the integral by the saddle-point
+approximation, the action should be maximized with respect to $m$. If $m_*$ is
+such a maximum, then the resulting average Euler characteristic is
+$\overline{\chi(\Omega)}\propto e^{N\mathcal S_\chi(m_*)}$. In the next
+subsection we examine the maxima of $\mathcal S_\chi$ their properties as the
+parameters are varied.
+
+\begin{figure}[tb]
\includegraphics{figs/action_1.pdf}
\hspace{-3.5em}
\includegraphics{figs/action_3.pdf}
@@ -834,9 +781,27 @@ JK-D is supported by a \textsc{DynSysMath} Specific Initiative of the INFN.
\section{Details of the calculation of the average Euler characteristic}
\label{sec:euler}
-Our starting point is the expression \eqref{eq:kac-rice.lagrange} with the
-substitutions of the $\delta$-function and determinant \eqref{eq:delta.exp} and
-\eqref{eq:det.exp} made. To make the calculation compact, we introduce
+Our starting point is the expression \eqref{eq:kac-rice.lagrange}. To evaluate
+the average of $\chi$ over the random constraints, we first translate the
+$\delta$-function and determinant to integral form, with
+\begin{align}
+ \label{eq:delta.exp}
+ \delta\big(\partial L(\mathbf x,\pmb\omega)\big)
+ &=\int\frac{d\hat{\mathbf x}}{(2\pi)^N}\frac{d\hat{\pmb\omega}}{(2\pi)^{M+1}}
+ \,e^{i[\hat{\mathbf x},\hat{\pmb\omega}]\cdot\partial L(\mathbf x,\pmb\omega)}
+ \\
+ \label{eq:det.exp}
+ \det\partial\partial L(\mathbf x,\pmb\omega)
+ &=\int d\bar{\pmb\eta}\,d\pmb\eta\,d\bar{\pmb\gamma}\,d\pmb\gamma\,
+ e^{-[\bar{\pmb\eta},\bar{\pmb\gamma}]^T\partial\partial L(\mathbf x,\pmb\omega)[\pmb\eta,\pmb\gamma]}
+\end{align}
+where $\hat{\mathbf x}$ and $\hat{\pmb\omega}$ are ordinary vectors and
+$\bar{\pmb\eta}$, $\pmb\eta$, $\bar{\pmb\gamma}$, and $\pmb\gamma$ are
+Grassmann vectors. With these expressions substituted into
+\eqref{eq:kac-rice.lagrange}, the result is an integral over an exponential
+whose argument is linear in the random functions $V_k$.
+
+To make the calculation compact, we introduce
superspace coordinates \cite{DeWitt_1992_Supermanifolds, Kent-Dobias_2024_Conditioning}. Introducing the Grassmann indices $\bar\theta_1$
and $\theta_1$, we define the supervectors
\begin{align}
@@ -1007,7 +972,37 @@ as removing all dependence on $\bar H$ and $H$. With these solutions inserted, t
\end{align}
The Grassmann terms in these expressions do not contribute to the effective
action, but will be important in our derivation of the prefactor for the
-exponential around the stationary points at $\pm m_*$. The substitution of these expressions into \eqref{eq:post.hubbard-strat} without the Grassmann terms yields \eqref{eq:euler.action} from the main text.
+exponential around the stationary points at $\pm m_*$. The substitution of these expressions into \eqref{eq:post.hubbard-strat} without the Grassmann terms yields
+\begin{equation} \label{eq:pre-saddle.characteristic}
+ \overline{\chi(\Omega)}
+ =\left(\frac N{2\pi}\right)^2\int dR\,dD\,dm\,d\hat m\,g(R,D,m,\hat m)\,e^{N\mathcal S_\chi(R,D,m,\hat m)}
+\end{equation}
+where $g$ is a prefactor of $o(N^0)$ detailed in the following appendix, $\mathcal S_\chi$ is an effective action defined by
+\begin{equation} \label{eq:euler.action}
+ \begin{aligned}
+ \mathcal S_\chi(R,D,m,\hat m)
+ &=-\hat m-\frac\alpha2\left[
+ \log\left(1+\frac{f(1)D}{f'(1)R^2}\right)
+ +\frac{V_0^2}{f(1)}\left(1+\frac{f'(1)R^2}{f(1)D}\right)^{-1}
+ \right] \\
+ &\hspace{7em}+\frac12\log\left(
+ 1+\frac{(1-m^2)D+\hat m^2-2Rm\hat m}{R^2}
+ \right)
+ \end{aligned}
+\end{equation}
+and where we have introduced the ratio $\alpha=M/N$.
+The integral \eqref{eq:pre-saddle.characteristic} can be evaluated to leading
+order in $N$ by a saddle point approximation. To get the formula \eqref{eq:S.m}
+in the main text, we first extremize this expression with respect to $R$, $D$,
+and $\hat m$, which take the saddle-point values
+\begin{align}
+ R=R^*
+ &&
+ D=-\frac{m+R_*}{1-m^2}R_*
+ &&
+ \hat m=0
+\end{align}
+where $R^*$ is given by \eqref{eq:rs} from the main text.
\section{Calculation of the prefactor of the average Euler characteristic}
\label{sec:prefactor}