diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-09-07 21:49:44 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-09-07 21:49:44 +0200 |
commit | 4585d9eea2e2fefac7d3ba6f0dcd1db0703e94be (patch) | |
tree | 6485112fbc9476659017364f225134603dc39a31 | |
parent | 4d6c19367c5eff3eaf29376d663369730d36cd74 (diff) | |
download | SciPostPhys_18_158-4585d9eea2e2fefac7d3ba6f0dcd1db0703e94be.tar.gz SciPostPhys_18_158-4585d9eea2e2fefac7d3ba6f0dcd1db0703e94be.tar.bz2 SciPostPhys_18_158-4585d9eea2e2fefac7d3ba6f0dcd1db0703e94be.zip |
More writing and tweaking.
-rw-r--r-- | topology.bib | 54 | ||||
-rw-r--r-- | topology.tex | 93 |
2 files changed, 105 insertions, 42 deletions
diff --git a/topology.bib b/topology.bib index 81d2df8..3281fd9 100644 --- a/topology.bib +++ b/topology.bib @@ -28,6 +28,48 @@ issn = {1079-7114} } +@article{Annibale_2003_Supersymmetric, + author = {Annibale, Alessia and Cavagna, Andrea and Giardina, Irene and Parisi, Giorgio}, + title = {Supersymmetric complexity in the {Sherrington}-{Kirkpatrick} model}, + journal = {Physical Review E}, + publisher = {American Physical Society (APS)}, + year = {2003}, + month = {12}, + number = {6}, + volume = {68}, + pages = {061103}, + url = {https://doi.org/10.1103%2Fphysreve.68.061103}, + doi = {10.1103/physreve.68.061103} +} + +@article{Annibale_2003_The, + author = {Annibale, Alessia and Cavagna, Andrea and Giardina, Irene and Parisi, Giorgio and Trevigne, Elisa}, + title = {The role of the {Becchi}--{Rouet}--{Stora}--{Tyutin} supersymmetry in the calculation of the complexity for the {Sherrington}--{Kirkpatrick} model}, + journal = {Journal of Physics A: Mathematical and General}, + publisher = {IOP Publishing}, + year = {2003}, + month = {10}, + number = {43}, + volume = {36}, + pages = {10937--10953}, + url = {https://doi.org/10.1088%2F0305-4470%2F36%2F43%2F018}, + doi = {10.1088/0305-4470/36/43/018} +} + +@article{Annibale_2004_Coexistence, + author = {Annibale, Alessia and Gualdi, Giulia and Cavagna, Andrea}, + title = {Coexistence of supersymmetric and supersymmetry-breaking states in spherical spin-glasses}, + journal = {Journal of Physics A: Mathematical and General}, + publisher = {IOP Publishing}, + year = {2004}, + month = {11}, + number = {47}, + volume = {37}, + pages = {11311--11320}, + url = {https://doi.org/10.1088%2F0305-4470%2F37%2F47%2F001}, + doi = {10.1088/0305-4470/37/47/001} +} + @book{Audin_2014_Morse, author = {Audin, Michèle and Damian, Mihai}, title = {Morse theory and {Floer} homology}, @@ -109,6 +151,18 @@ eprinttype = {arxiv} } +@book{DeWitt_1992_Supermanifolds, + author = {DeWitt, Bryce S.}, + title = {Supermanifolds}, + publisher = {Cambridge University Press}, + year = {1992}, + address = {Cambridge ; New York}, + edition = {2nd ed}, + isbn = {9780521413206 9780521423779}, + keyword = {Supermanifolds (Mathematics), Mathematical physics}, + series = {Cambridge monographs on mathematical physics} +} + @article{Erba_2024_Quenches, author = {Erba, Vittorio and Behrens, Freya and Krzakala, Florent and Zdeborová, Lenka}, title = {Quenches in the {Sherrington}–{Kirkpatrick} model}, diff --git a/topology.tex b/topology.tex index 4354db3..baf0766 100644 --- a/topology.tex +++ b/topology.tex @@ -1,5 +1,9 @@ \documentclass{SciPost} +% Prevent all line breaks in inline equations. +\binoppenalty=10000 +\relpenalty=10000 + \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{amsmath,latexsym,graphicx} @@ -834,7 +838,7 @@ JK-D is supported by a \textsc{DynSysMath} Specific Initiative of the INFN. Our starting point is the expression \eqref{eq:kac-rice.lagrange} with the substitutions of the $\delta$-function and determinant \eqref{eq:delta.exp} and \eqref{eq:det.exp} made. To make the calculation compact, we introduce -superspace coordinates. Introducing the Grassmann indices $\bar\theta_1$ +superspace coordinates \cite{DeWitt_1992_Supermanifolds}. Introducing the Grassmann indices $\bar\theta_1$ and $\theta_1$, we define the supervectors \begin{align} \pmb\phi(1)=\mathbf x+\bar\theta_1\pmb\eta+\bar{\pmb\eta}\theta_1+\bar\theta_1\theta_1i\hat{\mathbf x} @@ -859,7 +863,7 @@ The Euler characteristic can be expressed using these supervectors as \right] \right\} \notag \end{align} -where $d1=d\bar\theta_1\,d\theta_1$ is the integral over the Grassmann +where $d1=d\bar\theta_1\,d\theta_1$ is the integral over both Grassmann indices. Since this is an exponential integrand linear in the Gaussian functions $V_k$, we can take their average to find \begin{equation} \label{eq:χ.post-average} @@ -892,7 +896,7 @@ Performing that integral yields \end{equation} The supervector $\pmb\phi$ enters this expression as a function only of the scalar product with itself and with the vector $\mathbf x_0$ inside the -function $H(\mathbf x)=\mathbf x_0\cdot\mathbf x$. We therefore make a change +height function $H(\mathbf x)=\mathbf x_0\cdot\mathbf x$. We therefore make a change of variables to the superoperator $\mathbb Q$ and the supervector $\mathbb M$ defined by \begin{equation} @@ -902,19 +906,21 @@ defined by \end{equation} These new variables can replace $\pmb\phi$ in the integral using a generalized Hubbard--Stratonovich transformation, which yields \begin{align} - \overline{\chi(\Omega)} - &=\int d\mathbb Q\,d\mathbb M\,d\sigma_0\, - \left[(\operatorname{sdet}\mathbb Q)^\frac12+O(N^{-1})\right] + &\overline{\chi(\Omega)} + =\frac12\int d\mathbb Q\,d\mathbb M\,d\sigma_0\, + \left([\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T)]^\frac12+O(N^{-1})\right) \,\exp\Bigg\{ - N\int d1\left[ + \frac N2\log\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T) + \label{eq:post.hubbard-strat} + \\ + &+N\int d1\left[ \mathbb M(1) +\frac12\sigma_0(1)\big(\mathbb Q(1,1)-1\big) - \right] \notag \\ - &\hspace{3em}-\frac M2V_0^2\int d1\,d2\,f(\mathbb Q)^{-1}(1,2) + \right] + -\frac M2V_0^2\int d1\,d2\,f(\mathbb Q)^{-1}(1,2) -\frac M2\log\operatorname{sdet}f(\mathbb Q) - +\frac N2\log\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T) \Bigg\} - \label{eq:post.hubbard-strat} + \notag \end{align} where we show the asymptotic value of the prefactor in Appendix~\ref{sec:prefactor}. To move on from this expression, @@ -1066,7 +1072,7 @@ We can perform the remaining Gaussian integral in $\tilde{\mathbb M}$ to find \end{equation} The integral over $\tilde{\mathbb Q}$ can be evaluated to leading order using the saddle point method. The integrand is stationary at $\tilde{\mathbb Q}=(\mathbb Q-\mathbb -M\mathbb M^T)^{-1}$, whose substitution results in the term +M\mathbb M^T)^{-1}$, and substituting this into the above expression results in the term $\frac12\log\det(\mathbb Q-\mathbb M\mathbb M^T)$ in the effective action from \eqref{eq:post.hubbard-strat}. The saddle point also yields a prefactor of the form \begin{equation} @@ -1458,7 +1464,7 @@ by the Euler characteristic action $\mathcal S_\chi$, and not either of the values implied by the alternative solutions. This indicates that $\mathcal S_\mathcal N(m)=\mathcal S_\chi(m)$ in all regimes. -\section{The quenched shattering energy in {\oldstylenums 1}\textsc{frsb} models} +\section{The quenched shattering energy} \label{sec:1frsb} Here we share how the quenched shattering energy is calculated under a @@ -1467,29 +1473,30 @@ the spherical spin glasses, we start with \eqref{eq:χ.post-average}. The formula in a quenched calculation is almost the same as that for the annealed, but the order parameters $C$, $R$, $D$, and $G$ must be understood as $n\times n$ matrices rather than scalars. In principle $m$, $\hat m$, $\omega_0$, $\hat\omega_0$, $\omega_1$, and $\hat\omega_1$ should be considered $n$-dimensional vectors, but since in our ansatz replica vectors are constant we can take them to be constant from the start. We have -\begin{equation} - \begin{aligned} - \overline{\log\chi(\Omega)} - =\lim_{n\to0}\frac\partial{\partial n}\int dC\,dR\,dD\,dG\,dm\,d\hat m\,d\omega_0\,d\hat\omega_0\,d\omega_1\,d\hat\omega_1\, - \\ - \exp N\Bigg\{ - n\hat m+\frac i2\hat\omega_0\operatorname{Tr}(C-I)-\omega_0\operatorname{Tr}(G+R) - -in\hat\omega_1E_0 - +\frac12\log\det\begin{bmatrix} - C-m^2 & i(R-m\hat m) \\ i(R-m\hat m) & D-\hat m^2 - \end{bmatrix} - \\ - -\frac12\log G^2-\frac12\sum_{ab}^n\left[ - \hat\omega_1^2f(C_{ab}) - +(2i\omega_1\hat\omega_1R_{ab}+\omega_1^2D_{ab})f'(C_{ab}) - +\omega_1^2(G_{ab}^2-R_{ab}^2)f''(C_{ab}) - \right] - \Bigg\} - \end{aligned} -\end{equation} +\begin{align} + &\overline{\log\chi(\Omega)} + =\lim_{n\to0}\frac\partial{\partial n}\int dC\,dR\,dD\,dG\,dm\,d\hat m\,d\omega_0\,d\hat\omega_0\,d\omega_1\,d\hat\omega_1\, + \exp N\Bigg\{ + n\hat m + +\frac i2\hat\omega_0\operatorname{Tr}(C-I) + \notag \\ + &\hspace{2em}-\omega_0\operatorname{Tr}(G+R) + -in\hat\omega_1E_0 + +\frac12\log\det\begin{bmatrix} + C-m^2 & i(R-m\hat m) \\ i(R-m\hat m) & D-\hat m^2 + \end{bmatrix} + -\frac12\log G^2 + \notag \\ + &\hspace{2em}-\frac12\sum_{ab}^n\left[ + \hat\omega_1^2f(C_{ab}) + +(2i\omega_1\hat\omega_1R_{ab}+\omega_1^2D_{ab})f'(C_{ab}) + +\omega_1^2(G_{ab}^2-R_{ab}^2)f''(C_{ab}) + \right] + \Bigg\} +\end{align} which is completely general for the spherical spin glasses with $M=1$. We now make a series of simplifications. Ward identities associated with the BRST -symmetry possessed by the original action indicate that +symmetry possessed by the original action \cite{Annibale_2003_The, Annibale_2003_Supersymmetric, Annibale_2004_Coexistence} indicate that \begin{align} \omega_1D=-i\hat\omega_1R && @@ -1501,15 +1508,15 @@ Moreover, this problem with $m=0$ has a close resemblance to the complexity of the spherical spin glasses. In both, at the supersymmetric saddle point the matrix $R$ is diagonal with $R=r_dI$ \cite{Kent-Dobias_2023_How}. To investigate the shattering energy, we can restrict to solutions with $m=0$ -and look for the place where such solutions vanish. Inserting these simplifications, we have +and look for the place where such solutions vanish. Inserting these simplifications, we have up to highest order in $N$ \begin{equation} \begin{aligned} \overline{\log\chi(\Omega)} - \propto\lim_{n\to0}\frac\partial{\partial n}\int dC\,dR\,d\hat\omega_0\,d\omega_1\,d\hat\omega_1\, + =\lim_{n\to0}\frac\partial{\partial n}\int dC\,dR\,d\hat\omega_0\,d\omega_1\,d\hat\omega_1\, \exp N\Bigg\{ \frac i2\hat\omega_0\operatorname{Tr}(C-I) -in\hat\omega_1E - \\ + \qquad\\ -i\frac12n\omega_1\hat\omega_1r_df'(1) -\frac12\sum_{ab}^n \hat\omega_1^2f(C_{ab}) @@ -1522,11 +1529,11 @@ If we redefine $\hat\beta=-i\hat\omega_1$ and $\tilde r_d=\omega_1 r_d$, we find \begin{equation} \begin{aligned} \overline{\log\chi(\Omega)} - \propto\lim_{n\to0}\frac\partial{\partial n}\int dC\,d\hat\beta\,d\tilde r_d\,\hat\omega_0\, + =\lim_{n\to0}\frac\partial{\partial n}\int dC\,d\hat\beta\,d\tilde r_d\,\hat\omega_0\, \exp N\Bigg\{ \frac i2\hat\omega_0\operatorname{Tr}(C-I) +n\hat\beta E - \\ + \qquad\\ +n\frac12\hat\beta\tilde r_df'(1) +\frac12\sum_{ab}^n \hat\beta^2f(C_{ab}) @@ -1539,9 +1546,9 @@ which is exactly the effective action for the supersymmetric complexity in the spherical spin glasses when in the regime where minima dominate \cite{Kent-Dobias_2023_How}. As the effective action for the Euler characteristic, this expression is valid whether minima dominate or not. Following the same steps as in \cite{Kent-Dobias_2023_How}, we can write the continuum version of this action -for arbitrary \textsc{rsb} structure as +for arbitrary \textsc{rsb} structure in the matrix $C$ as \begin{equation} \label{eq:cont.action} - \overline{\log\chi(\Omega)}=\hat\beta E+\frac12\hat\beta\tilde r_df'(1) + \frac1N\overline{\log\chi(\Omega)}=\hat\beta E+\frac12\hat\beta\tilde r_df'(1) +\frac12\int_0^1dq\,\left[ \hat\beta^2f''(q)\chi(q)+\frac1{\chi(q)+\tilde r_d\hat\beta^{-1}} \right] @@ -1573,7 +1580,9 @@ between \textsc{frsb} and {\oldstylenums1}\textsc{frsb} in this setting is that in the former case the ground state has $q_0=1$, while in the latter the ground state has $q_0<1$. -We use this action to find the shattering energy in the following way. First, setting $\overline{\log\chi(\Omega)}=0$ and solving for $E$ yields a formula for the ground state energy +We use this action to find the shattering energy in the following way. First, +we know that the ground state energy is the place where the manifold and therefore the average Euler characteristic vanishes. Therefore, setting $\overline{\log\chi(\Omega)}=0$ and solving for $E$ yields a formula +for the ground state energy \begin{equation} E_\text{gs}=-\frac1{\hat\beta}\left\{ \frac12\hat\beta\tilde r_df'(1) |