summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2024-09-07 21:49:44 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2024-09-07 21:49:44 +0200
commit4585d9eea2e2fefac7d3ba6f0dcd1db0703e94be (patch)
tree6485112fbc9476659017364f225134603dc39a31
parent4d6c19367c5eff3eaf29376d663369730d36cd74 (diff)
downloadSciPostPhys_18_158-4585d9eea2e2fefac7d3ba6f0dcd1db0703e94be.tar.gz
SciPostPhys_18_158-4585d9eea2e2fefac7d3ba6f0dcd1db0703e94be.tar.bz2
SciPostPhys_18_158-4585d9eea2e2fefac7d3ba6f0dcd1db0703e94be.zip
More writing and tweaking.
-rw-r--r--topology.bib54
-rw-r--r--topology.tex93
2 files changed, 105 insertions, 42 deletions
diff --git a/topology.bib b/topology.bib
index 81d2df8..3281fd9 100644
--- a/topology.bib
+++ b/topology.bib
@@ -28,6 +28,48 @@
issn = {1079-7114}
}
+@article{Annibale_2003_Supersymmetric,
+ author = {Annibale, Alessia and Cavagna, Andrea and Giardina, Irene and Parisi, Giorgio},
+ title = {Supersymmetric complexity in the {Sherrington}-{Kirkpatrick} model},
+ journal = {Physical Review E},
+ publisher = {American Physical Society (APS)},
+ year = {2003},
+ month = {12},
+ number = {6},
+ volume = {68},
+ pages = {061103},
+ url = {https://doi.org/10.1103%2Fphysreve.68.061103},
+ doi = {10.1103/physreve.68.061103}
+}
+
+@article{Annibale_2003_The,
+ author = {Annibale, Alessia and Cavagna, Andrea and Giardina, Irene and Parisi, Giorgio and Trevigne, Elisa},
+ title = {The role of the {Becchi}--{Rouet}--{Stora}--{Tyutin} supersymmetry in the calculation of the complexity for the {Sherrington}--{Kirkpatrick} model},
+ journal = {Journal of Physics A: Mathematical and General},
+ publisher = {IOP Publishing},
+ year = {2003},
+ month = {10},
+ number = {43},
+ volume = {36},
+ pages = {10937--10953},
+ url = {https://doi.org/10.1088%2F0305-4470%2F36%2F43%2F018},
+ doi = {10.1088/0305-4470/36/43/018}
+}
+
+@article{Annibale_2004_Coexistence,
+ author = {Annibale, Alessia and Gualdi, Giulia and Cavagna, Andrea},
+ title = {Coexistence of supersymmetric and supersymmetry-breaking states in spherical spin-glasses},
+ journal = {Journal of Physics A: Mathematical and General},
+ publisher = {IOP Publishing},
+ year = {2004},
+ month = {11},
+ number = {47},
+ volume = {37},
+ pages = {11311--11320},
+ url = {https://doi.org/10.1088%2F0305-4470%2F37%2F47%2F001},
+ doi = {10.1088/0305-4470/37/47/001}
+}
+
@book{Audin_2014_Morse,
author = {Audin, Michèle and Damian, Mihai},
title = {Morse theory and {Floer} homology},
@@ -109,6 +151,18 @@
eprinttype = {arxiv}
}
+@book{DeWitt_1992_Supermanifolds,
+ author = {DeWitt, Bryce S.},
+ title = {Supermanifolds},
+ publisher = {Cambridge University Press},
+ year = {1992},
+ address = {Cambridge ; New York},
+ edition = {2nd ed},
+ isbn = {9780521413206 9780521423779},
+ keyword = {Supermanifolds (Mathematics), Mathematical physics},
+ series = {Cambridge monographs on mathematical physics}
+}
+
@article{Erba_2024_Quenches,
author = {Erba, Vittorio and Behrens, Freya and Krzakala, Florent and Zdeborová, Lenka},
title = {Quenches in the {Sherrington}–{Kirkpatrick} model},
diff --git a/topology.tex b/topology.tex
index 4354db3..baf0766 100644
--- a/topology.tex
+++ b/topology.tex
@@ -1,5 +1,9 @@
\documentclass{SciPost}
+% Prevent all line breaks in inline equations.
+\binoppenalty=10000
+\relpenalty=10000
+
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath,latexsym,graphicx}
@@ -834,7 +838,7 @@ JK-D is supported by a \textsc{DynSysMath} Specific Initiative of the INFN.
Our starting point is the expression \eqref{eq:kac-rice.lagrange} with the
substitutions of the $\delta$-function and determinant \eqref{eq:delta.exp} and
\eqref{eq:det.exp} made. To make the calculation compact, we introduce
-superspace coordinates. Introducing the Grassmann indices $\bar\theta_1$
+superspace coordinates \cite{DeWitt_1992_Supermanifolds}. Introducing the Grassmann indices $\bar\theta_1$
and $\theta_1$, we define the supervectors
\begin{align}
\pmb\phi(1)=\mathbf x+\bar\theta_1\pmb\eta+\bar{\pmb\eta}\theta_1+\bar\theta_1\theta_1i\hat{\mathbf x}
@@ -859,7 +863,7 @@ The Euler characteristic can be expressed using these supervectors as
\right]
\right\} \notag
\end{align}
-where $d1=d\bar\theta_1\,d\theta_1$ is the integral over the Grassmann
+where $d1=d\bar\theta_1\,d\theta_1$ is the integral over both Grassmann
indices. Since this is an exponential integrand linear in the Gaussian
functions $V_k$, we can take their average to find
\begin{equation} \label{eq:χ.post-average}
@@ -892,7 +896,7 @@ Performing that integral yields
\end{equation}
The supervector $\pmb\phi$ enters this expression as a function only of the
scalar product with itself and with the vector $\mathbf x_0$ inside the
-function $H(\mathbf x)=\mathbf x_0\cdot\mathbf x$. We therefore make a change
+height function $H(\mathbf x)=\mathbf x_0\cdot\mathbf x$. We therefore make a change
of variables to the superoperator $\mathbb Q$ and the supervector $\mathbb M$
defined by
\begin{equation}
@@ -902,19 +906,21 @@ defined by
\end{equation}
These new variables can replace $\pmb\phi$ in the integral using a generalized Hubbard--Stratonovich transformation, which yields
\begin{align}
- \overline{\chi(\Omega)}
- &=\int d\mathbb Q\,d\mathbb M\,d\sigma_0\,
- \left[(\operatorname{sdet}\mathbb Q)^\frac12+O(N^{-1})\right]
+ &\overline{\chi(\Omega)}
+ =\frac12\int d\mathbb Q\,d\mathbb M\,d\sigma_0\,
+ \left([\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T)]^\frac12+O(N^{-1})\right)
\,\exp\Bigg\{
- N\int d1\left[
+ \frac N2\log\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T)
+ \label{eq:post.hubbard-strat}
+ \\
+ &+N\int d1\left[
\mathbb M(1)
+\frac12\sigma_0(1)\big(\mathbb Q(1,1)-1\big)
- \right] \notag \\
- &\hspace{3em}-\frac M2V_0^2\int d1\,d2\,f(\mathbb Q)^{-1}(1,2)
+ \right]
+ -\frac M2V_0^2\int d1\,d2\,f(\mathbb Q)^{-1}(1,2)
-\frac M2\log\operatorname{sdet}f(\mathbb Q)
- +\frac N2\log\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T)
\Bigg\}
- \label{eq:post.hubbard-strat}
+ \notag
\end{align}
where we show the asymptotic value of the prefactor in Appendix~\ref{sec:prefactor}.
To move on from this expression,
@@ -1066,7 +1072,7 @@ We can perform the remaining Gaussian integral in $\tilde{\mathbb M}$ to find
\end{equation}
The integral over $\tilde{\mathbb Q}$ can be evaluated to leading order using the saddle point
method. The integrand is stationary at $\tilde{\mathbb Q}=(\mathbb Q-\mathbb
-M\mathbb M^T)^{-1}$, whose substitution results in the term
+M\mathbb M^T)^{-1}$, and substituting this into the above expression results in the term
$\frac12\log\det(\mathbb Q-\mathbb M\mathbb M^T)$ in the effective action from
\eqref{eq:post.hubbard-strat}. The saddle point also yields a prefactor of the form
\begin{equation}
@@ -1458,7 +1464,7 @@ by the Euler characteristic action $\mathcal S_\chi$, and not either of the
values implied by the alternative solutions. This indicates that $\mathcal
S_\mathcal N(m)=\mathcal S_\chi(m)$ in all regimes.
-\section{The quenched shattering energy in {\oldstylenums 1}\textsc{frsb} models}
+\section{The quenched shattering energy}
\label{sec:1frsb}
Here we share how the quenched shattering energy is calculated under a
@@ -1467,29 +1473,30 @@ the spherical spin glasses, we start with \eqref{eq:χ.post-average}. The
formula in a quenched calculation is almost the same as that for the annealed,
but the order parameters $C$, $R$, $D$, and $G$ must be understood as $n\times
n$ matrices rather than scalars. In principle $m$, $\hat m$, $\omega_0$, $\hat\omega_0$, $\omega_1$, and $\hat\omega_1$ should be considered $n$-dimensional vectors, but since in our ansatz replica vectors are constant we can take them to be constant from the start. We have
-\begin{equation}
- \begin{aligned}
- \overline{\log\chi(\Omega)}
- =\lim_{n\to0}\frac\partial{\partial n}\int dC\,dR\,dD\,dG\,dm\,d\hat m\,d\omega_0\,d\hat\omega_0\,d\omega_1\,d\hat\omega_1\,
- \\
- \exp N\Bigg\{
- n\hat m+\frac i2\hat\omega_0\operatorname{Tr}(C-I)-\omega_0\operatorname{Tr}(G+R)
- -in\hat\omega_1E_0
- +\frac12\log\det\begin{bmatrix}
- C-m^2 & i(R-m\hat m) \\ i(R-m\hat m) & D-\hat m^2
- \end{bmatrix}
- \\
- -\frac12\log G^2-\frac12\sum_{ab}^n\left[
- \hat\omega_1^2f(C_{ab})
- +(2i\omega_1\hat\omega_1R_{ab}+\omega_1^2D_{ab})f'(C_{ab})
- +\omega_1^2(G_{ab}^2-R_{ab}^2)f''(C_{ab})
- \right]
- \Bigg\}
- \end{aligned}
-\end{equation}
+\begin{align}
+ &\overline{\log\chi(\Omega)}
+ =\lim_{n\to0}\frac\partial{\partial n}\int dC\,dR\,dD\,dG\,dm\,d\hat m\,d\omega_0\,d\hat\omega_0\,d\omega_1\,d\hat\omega_1\,
+ \exp N\Bigg\{
+ n\hat m
+ +\frac i2\hat\omega_0\operatorname{Tr}(C-I)
+ \notag \\
+ &\hspace{2em}-\omega_0\operatorname{Tr}(G+R)
+ -in\hat\omega_1E_0
+ +\frac12\log\det\begin{bmatrix}
+ C-m^2 & i(R-m\hat m) \\ i(R-m\hat m) & D-\hat m^2
+ \end{bmatrix}
+ -\frac12\log G^2
+ \notag \\
+ &\hspace{2em}-\frac12\sum_{ab}^n\left[
+ \hat\omega_1^2f(C_{ab})
+ +(2i\omega_1\hat\omega_1R_{ab}+\omega_1^2D_{ab})f'(C_{ab})
+ +\omega_1^2(G_{ab}^2-R_{ab}^2)f''(C_{ab})
+ \right]
+ \Bigg\}
+\end{align}
which is completely general for the spherical spin glasses with $M=1$. We now
make a series of simplifications. Ward identities associated with the BRST
-symmetry possessed by the original action indicate that
+symmetry possessed by the original action \cite{Annibale_2003_The, Annibale_2003_Supersymmetric, Annibale_2004_Coexistence} indicate that
\begin{align}
\omega_1D=-i\hat\omega_1R
&&
@@ -1501,15 +1508,15 @@ Moreover, this problem with $m=0$ has a close resemblance to the complexity of
the spherical spin glasses. In both, at the supersymmetric saddle point the
matrix $R$ is diagonal with $R=r_dI$ \cite{Kent-Dobias_2023_How}.
To investigate the shattering energy, we can restrict to solutions with $m=0$
-and look for the place where such solutions vanish. Inserting these simplifications, we have
+and look for the place where such solutions vanish. Inserting these simplifications, we have up to highest order in $N$
\begin{equation}
\begin{aligned}
\overline{\log\chi(\Omega)}
- \propto\lim_{n\to0}\frac\partial{\partial n}\int dC\,dR\,d\hat\omega_0\,d\omega_1\,d\hat\omega_1\,
+ =\lim_{n\to0}\frac\partial{\partial n}\int dC\,dR\,d\hat\omega_0\,d\omega_1\,d\hat\omega_1\,
\exp N\Bigg\{
\frac i2\hat\omega_0\operatorname{Tr}(C-I)
-in\hat\omega_1E
- \\
+ \qquad\\
-i\frac12n\omega_1\hat\omega_1r_df'(1)
-\frac12\sum_{ab}^n
\hat\omega_1^2f(C_{ab})
@@ -1522,11 +1529,11 @@ If we redefine $\hat\beta=-i\hat\omega_1$ and $\tilde r_d=\omega_1 r_d$, we find
\begin{equation}
\begin{aligned}
\overline{\log\chi(\Omega)}
- \propto\lim_{n\to0}\frac\partial{\partial n}\int dC\,d\hat\beta\,d\tilde r_d\,\hat\omega_0\,
+ =\lim_{n\to0}\frac\partial{\partial n}\int dC\,d\hat\beta\,d\tilde r_d\,\hat\omega_0\,
\exp N\Bigg\{
\frac i2\hat\omega_0\operatorname{Tr}(C-I)
+n\hat\beta E
- \\
+ \qquad\\
+n\frac12\hat\beta\tilde r_df'(1)
+\frac12\sum_{ab}^n
\hat\beta^2f(C_{ab})
@@ -1539,9 +1546,9 @@ which is exactly the effective action for the supersymmetric complexity in the
spherical spin glasses when in the regime where minima dominate
\cite{Kent-Dobias_2023_How}. As the effective action for the Euler characteristic, this expression is valid whether minima dominate or not. Following the same steps as in
\cite{Kent-Dobias_2023_How}, we can write the continuum version of this action
-for arbitrary \textsc{rsb} structure as
+for arbitrary \textsc{rsb} structure in the matrix $C$ as
\begin{equation} \label{eq:cont.action}
- \overline{\log\chi(\Omega)}=\hat\beta E+\frac12\hat\beta\tilde r_df'(1)
+ \frac1N\overline{\log\chi(\Omega)}=\hat\beta E+\frac12\hat\beta\tilde r_df'(1)
+\frac12\int_0^1dq\,\left[
\hat\beta^2f''(q)\chi(q)+\frac1{\chi(q)+\tilde r_d\hat\beta^{-1}}
\right]
@@ -1573,7 +1580,9 @@ between \textsc{frsb} and {\oldstylenums1}\textsc{frsb} in this setting is that
in the former case the ground state has $q_0=1$, while in the latter the ground
state has $q_0<1$.
-We use this action to find the shattering energy in the following way. First, setting $\overline{\log\chi(\Omega)}=0$ and solving for $E$ yields a formula for the ground state energy
+We use this action to find the shattering energy in the following way. First,
+we know that the ground state energy is the place where the manifold and therefore the average Euler characteristic vanishes. Therefore, setting $\overline{\log\chi(\Omega)}=0$ and solving for $E$ yields a formula
+for the ground state energy
\begin{equation}
E_\text{gs}=-\frac1{\hat\beta}\left\{
\frac12\hat\beta\tilde r_df'(1)