diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-09-19 15:46:57 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-09-19 15:46:57 +0200 |
commit | 59171dedca30463d3c6925c39f1c88be9727cd3c (patch) | |
tree | 12db67e705b204fb16595758c43932d7cfdd9279 | |
parent | 5aafa92d1e4bc9f44b253b6601e00d2b17a1026a (diff) | |
download | SciPostPhys_18_158-59171dedca30463d3c6925c39f1c88be9727cd3c.tar.gz SciPostPhys_18_158-59171dedca30463d3c6925c39f1c88be9727cd3c.tar.bz2 SciPostPhys_18_158-59171dedca30463d3c6925c39f1c88be9727cd3c.zip |
Fixed missing word.arXiv.v1
-rw-r--r-- | topology.tex | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/topology.tex b/topology.tex index 6f8f9fa..c203b6b 100644 --- a/topology.tex +++ b/topology.tex @@ -309,7 +309,7 @@ parameters. To finish evaluating the integral by the saddle-point approximation, the action should be maximized with respect to $m$. If $m_*$ is such a maximum, then the resulting average Euler characteristic is $\overline{\chi(\Omega)}\propto e^{N\mathcal S_\chi(m_*)}$. In the next -subsection we examine the maxima of $\mathcal S_\chi$ their properties as the +subsection we examine the maxima of $\mathcal S_\chi$ and their properties as the parameters are varied. \begin{figure}[tb] |