diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-09-15 22:12:18 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-09-15 22:12:18 +0200 |
commit | b5105804f0d1c7483d09cc8f770eb660c409a134 (patch) | |
tree | 720f5fdbee88be2a6e1e7115340bbbd622606358 | |
parent | 194d0b40e3d74b45c586de5406662b65eda9065e (diff) | |
download | SciPostPhys_18_158-b5105804f0d1c7483d09cc8f770eb660c409a134.tar.gz SciPostPhys_18_158-b5105804f0d1c7483d09cc8f770eb660c409a134.tar.bz2 SciPostPhys_18_158-b5105804f0d1c7483d09cc8f770eb660c409a134.zip |
Reorganizing.
-rw-r--r-- | topology.tex | 350 |
1 files changed, 17 insertions, 333 deletions
diff --git a/topology.tex b/topology.tex index 277d8d3..3801eae 100644 --- a/topology.tex +++ b/topology.tex @@ -492,6 +492,23 @@ case whenever $V_{\text{\textsc{sat}}\ast}^2<V_\text{on}^2$. } \label{fig:phases} \end{figure} +\begin{figure} + \includegraphics{figs/phases_12_1.pdf} + \hspace{-2.85em} + \includegraphics{figs/phases_12_2.pdf} + \hspace{-2.85em} + \includegraphics{figs/phases_12_3.pdf} + \hspace{-2.85em} + \includegraphics{figs/phases_12_4.pdf} + + \caption{ + \textbf{Linear--quadratic crossover.} + Topological phases for models with a covariance function + $f(q)=(1-\lambda)q+\lambda\frac12q^2$ for several values of $\lambda$, + interpolating between homogeneous linear ($\lambda=0$) and quadratic ($\lambda=1$) constraints. + } +\end{figure} + The phase diagram implied by these transitions is shown in Fig.~\ref{fig:phases} for three different homogeneous $f(q)$. One interesting feature occurs in the limit of $\alpha$ to zero. If $V_0$ is likewise rescaled @@ -525,82 +542,6 @@ S_\chi(m)$ represents breaks down due to the vanishingly small probability of finding any stationary points. - -\section{Complexity of a linear test function} - -One way to definitely narrow possible interpretations of the average Euler -characteristic is to compute a complementary average. The Euler characteristic -is the alternating sum of numbers of critical points of different index. If -instead we make the direct sum -\begin{equation} \label{eq:abs.kac-rice} - \mathcal N_H(\Omega)=\sum_{i=0}^N\mathcal N_H(\text{index}=i) - =\int_\Omega d\mathbf x\,\delta\big(\nabla H(\mathbf x)\big) - \,\big|\det\operatorname{Hess}H(\mathbf x)\big| -\end{equation} -we find the total number of stationary points. The formula is exactly the same -as that for the average Euler characteristic except for an absolute value sign -around the determinant of the Hessian. - -Understanding the number of stationary points as a function of latitude $m$ -will clarify the meaning of our effective action for the average Euler -characteristic in the range of overlaps $m$ where it takes a complex value. This is because the average number of stationary points is a -nonnegative number. If the region of complex $\mathcal S_\chi$ has a -well-defined number of stationary points, it indicates that we are looking at a -situation with a negative average Euler characteristic. In fact, this is what we find below. - -To compute the complexity, we follow a similar procedure to the Euler -characteristic. The main difference lies in how we treat the absolute value -function around the determinant. Following \cite{Fyodorov_2004_Complexity}, we -make use of the identity -\begin{equation} \label{eq:fyodorov.nightmare} - \begin{aligned} - |\det A| - &=\lim_{\epsilon\to0}\frac{(\det A)^2}{\sqrt{\det(A+i\epsilon I)}\sqrt{\det(A-i\epsilon I)}} - \\ - &=\frac1{(2\pi)^N}\int d\bar{\pmb\eta}_1\,d\pmb\eta_1\,d\bar{\pmb\eta}_2\,d\pmb\eta_2\,d\mathbf a_+\,d\mathbf a_2\, - e^{ - -\bar{\pmb\eta}_1^TA\pmb\eta_1-\bar{\pmb\eta}_2^TA\pmb\eta_2 - -\frac12\mathbf a_+^T(A+i\epsilon I)\mathbf a_+-\frac12\mathbf a_2^T(A-i\epsilon I)\mathbf a_2 - } -\end{aligned} -\end{equation} -for an $N\times N$ matrix $A$. Here $\bar{\pmb\eta}_1$, $\pmb\eta_1$, -$\bar{\pmb\eta}_2$, and $\pmb\eta_2$ are Grassmann vectors and $\mathbf a$ and -$\mathbf b$ are regular vectors. This introduces many new order parameters into -the problem, but this is a difficulty of scale rather than principle. With this -identity substituted for the usual determinant one, the problem can be solved -much as before. The details of this solution are relegated to -Appendix~\ref{sec:complexity.details}. We again reduce the result to a single integral over the overlap $m$ with the height axis, of the form -\begin{equation} - \overline{\mathcal N_H(\Omega)} - \propto\int dm\,e^{N\mathcal S_\mathcal N(m)} -\end{equation} -For $m^2>m_c$ the effective action $\mathcal S_\mathcal N(m)$ is the same as -$\mathcal S_\chi(m)$ for the Euler characteristic, where we have defined -\begin{equation} - m_c^2 - =1-\frac{2(1-\alpha)f(1)f'(1)}{ - (2-\alpha)f(1)f''(1)+2(1-\alpha)f'(1)^2 - -\sqrt{\alpha f''(1)}\sqrt{4V_0^2(1-\alpha)f'(1)^2+\alpha f(1)^2f''(1)} - } -\end{equation} -For $m^2\leq m_c$ it instead takes the value -\begin{align} - &\mathcal S_\mathcal N^*(m) - = - -\frac12\alpha\left( - 1+\frac{V_0^2\big[f''(1)(1-m^2)-f'(1)\big]}{(1-m^2)[f''(1)f(1)+f'(1)^2]-f(1)f'(1)} - \right) - \\ - &\quad+\frac12(1-\alpha)\log\left( - \frac{f''(1)(1-m^2)}{f'(1)(1-\alpha)} - \right) - -\frac12\alpha\log\left( - \frac{\alpha f'(1)V_0^2}{(1-m^2)[f''(1)f(1)+f'(1)^2]-f(1)f'(1)} - \right) - \notag -\end{align} - \section{Implications for the topology of solutions} It is not straightforward to directly use the average Euler characteristic to @@ -1284,263 +1225,6 @@ orders in $N$, since for odd-dimensional manifolds the Euler characteristic is always zero. When $N+M+1$ is even, we have $\overline{\chi(\Omega)}=2$ to leading order in $N$, as specified in the main text. -\section{Details of the calculation of the complexity} -\label{sec:complexity.details} - -Starting from \eqref{eq:abs.kac-rice}, we make the substitution -\eqref{eq:delta.exp} to treat the Dirac $\delta$-function and use -\eqref{eq:fyodorov.nightmare} to write the absolute value of the determinant as -\begin{align} - &\big|\det\partial\partial L(\mathbf x,\pmb\omega)\big| - =\lim_{\epsilon\to0}\frac1{(2\pi)^{N+M+1}}\int d\bar{\pmb\eta}_1\,d\pmb\eta_1\,d\bar{\pmb\eta}_2\,d\pmb\eta_2\, - d\bar{\pmb\gamma}_1\,d\pmb\gamma_1\,d\bar{\pmb\gamma}_2\,d\pmb\gamma_2\, - d\mathbf a_1\,d\mathbf a_2\,d\mathbf b_1\,d\mathbf b_2\, \notag \\ - &\qquad\times\exp\Bigg\{ - -\frac12\begin{bmatrix}\mathbf a_1^T&\mathbf b_1^T\end{bmatrix}\big(\partial\partial L(\mathbf x,\pmb\omega)+i\epsilon I\big)\begin{bmatrix}\mathbf a_1\\\mathbf b_1\end{bmatrix} - -\frac12\begin{bmatrix}\mathbf a_2^T&\mathbf b_2^T\end{bmatrix}\big(\partial\partial L(\mathbf x,\pmb\omega)-i\epsilon I\big)\begin{bmatrix}\mathbf a_2\\\mathbf b_2\end{bmatrix} - \notag \\ - &\hspace{6em}-\begin{bmatrix}\bar{\pmb\eta}_1^T&\bar{\pmb\gamma}_1^T\end{bmatrix}\partial\partial L(\mathbf x,\pmb\omega)\begin{bmatrix}\pmb\eta_1\\\pmb\gamma_1\end{bmatrix} - -\begin{bmatrix}\bar{\pmb\eta}_2^T&\bar{\pmb\gamma}_2^T\end{bmatrix}\partial\partial L(\mathbf x,\pmb\omega)\begin{bmatrix}\pmb\eta_2\\\pmb\gamma_2\end{bmatrix} - \Bigg\} - \label{eq:abs.det.exp} -\end{align} -where the $\mathbf a_{\sfrac12}$ are in $\mathbb R^N$, the $\mathbf b_{\sfrac12}$ are in -$\mathbb R^M$, and the $\pmb\eta_{\sfrac12}$ and $\pmb\gamma_{\sfrac12}$ are Grassmann vectors just as in -\eqref{eq:det.exp}, except with an extra copy of each. This zoo of vectors -quickly becomes tiring. Thankfully, there is a way to compactly represent this -calculation again using superspace vectors. - -Consider the vectors -\begin{align} - \pmb\phi(1,2) - &=\mathbf x - +\bar\theta_1\pmb\eta_1+\bar{\pmb\eta}_1\theta_1\bar\theta_2\theta_2 - +\bar\theta_2\pmb\eta_2+\bar{\pmb\eta}_2\theta_2\bar\theta_1\theta_1 \\ - &\qquad+\frac1{\sqrt2}(\bar\theta_1\theta_2+\bar\theta_2\theta_1)\mathbf a_1 - +\frac i{\sqrt2}(\bar\theta_1\theta_1+\bar\theta_2\theta_2)\mathbf a_2 - +\bar\theta_1\theta_1\bar\theta_2\theta_2i\hat{\mathbf x} - \notag \\ - \sigma_k(1,2) - &=\omega_k - +\bar\theta_1\gamma_{1k}+\bar{\gamma}_{1k}\theta_1\bar\theta_2\theta_2 - +\bar\theta_2\gamma_{2k}+\bar{\gamma}_{2k}\theta_2\bar\theta_1\theta_1 \\ - &\qquad+\frac1{\sqrt2}(\bar\theta_1\theta_2+\bar\theta_2\theta_1)b_{1k} - +\frac i{\sqrt2}(\bar\theta_1\theta_1+\bar\theta_2\theta_2)b_{2k} - +\bar\theta_1\theta_1\bar\theta_2\theta_2\hat\omega_k - \notag -\end{align} -The entire expression for the complexity of stationary points combining -\eqref{eq:delta.exp} and \eqref{eq:abs.det.exp} can be expressed in the compact -form -\begin{equation} - \mathcal N_H(\Omega) - =\lim_{\epsilon\to0}\int d\pmb\phi\,d\pmb\sigma\,e^{ - \int d1\,d2\,L(\pmb\phi(1,2),\pmb\sigma(1,2)) - -\frac{i\epsilon}2 - (\|\mathbf a_1\|^2-\|\mathbf a_2\|^2+\|\mathbf b_1\|^2-\|\mathbf b_2\|^2) - } -\end{equation} -Note that unlike in the derivation of the average Euler characteristic, -$\pmb\phi(1,2)$ does not span the entire superspace. Therefore, we will not be -able to write expressions like the superdeterminant of -$f(\pmb\phi^T\pmb\phi/N)$, which are formally zero. - -Following similar steps as for the Euler characteristic, we first take the average over the random constraint functions $V$. This yields -\begin{equation} - \begin{aligned} - \overline{\mathcal N_H(\Omega)} - =\int d\pmb\phi\,d\pmb\sigma\,\exp\Bigg\{ - \frac12\int d1\,d2\,d3\,d4\,\sum_{k=1}^M\sigma_k(1,2)\sigma_k(3,4)f\left(\frac{\pmb\phi(1,2)\cdot\pmb\phi(3,4)}N\right) - \\ - +\int d1\,d2\left[ - H(\pmb\phi(1,2)) - +\frac12\sigma_0(1,2)\big(\|\pmb\phi(1,2)\|^2-N\big) - -V_0\sum_{k=1}^M\sigma_k(1,2) - \right] - \Bigg\} - \end{aligned} -\end{equation} -We once again have a Gaussian integral in the parameters inside the Lagrange -multipliers $\sigma_k$ for $k=1,\ldots,M$. However, here we must expand the -superfields at this stage. Before that, we introduce order parameters analogous -to before. Alongside those in \eqref{eq:ops.bos}, we have -\begin{align} - A_{ij}=\frac{\mathbf a_i\cdot\mathbf a_j}N - && - X_i=\frac{\mathbf x\cdot\mathbf a_i}N - && - \hat X_i=-i\frac{\hat{\mathbf x}\cdot\mathbf a_i}N - && - H_{ij}=\frac{\bar{\pmb\eta}_i\cdot\pmb\eta_j}N - && - J=\frac{\pmb\eta_1\cdot\pmb\eta_2}N - && - m_i = \frac{\mathbf x_0\cdot\mathbf a_i}N -\end{align} -where the $i$ and $j$ run over $1$ and $2$. -These come with a volume term in the action -\begin{equation} - \begin{aligned} - \mathcal V=\frac12\log\det\left( - \begin{bmatrix} - C & iR & X_1 & X_2 \\ - iR & D & i\hat X_1 & i\hat X_2 \\ - X_1 & i\hat X_1 & A_{11} & A_{12} \\ - X_2 & i\hat X_2 & A_{12} & A_{22} - \end{bmatrix} - -\begin{bmatrix} - m \\ - i\hat m \\ - m_1 \\ - m_2 - \end{bmatrix} - \begin{bmatrix} - m & - i\hat m & - m_1 & - m_2 - \end{bmatrix} - \right) \qquad \\ - -\frac12\log\det\begin{bmatrix} - 0 & G_{11} & \bar J & G_{12} \\ - -G_{11} & 0 & -G_{21} & J \\ - -\bar J & G_{21} & 0 & G_{22} \\ - -G_{12} & -J & -G_{22} & 0 - \end{bmatrix} - \end{aligned} -\end{equation} -As before, we can immediately integrate out $\sigma_0$, which fixes certain of the order parameters. In particular, we find -\begin{align} - C=1 && - X_1=0 && - X_2=0 && - G_+=-R-\frac12A_+ -\end{align} -where we have defined the symmetric and antisymmetric combinations of $G_{11}$ and $G_{22}$ -\begin{align} - G_+=G_{11}+G_{22} - && - G_-=G_{11}-G_{22} - && - A_+=A_{11}+A_{22} - && - A_-=A_{11}-A_{22} -\end{align} -Once the first three substitutions have been made, the result for the Gaussian -integral in the ordinary variables $\omega_k$, $\hat\omega_k$, $b_{1k}$, and -$b_{2k}$ is a kernel with -\begin{equation} - K=\begin{bmatrix} - K_{11} & iRf'(1) & -\hat X_1 f'(1) & -\hat X_2 f'(1) \\ - iRf'(1) & f(1) & 0 & 0 \\ - -\hat X_1 f'(1) & 0 & i\epsilon-\tfrac12f'(1)(A_++A_-) & -A_{12}f'(1) \\ - -\hat X_2 f'(1) & 0 & -A_{12}f'(1) & -i\epsilon-\tfrac12f'(1)(A_+-A_-) - \end{bmatrix} -\end{equation} -\begin{equation} - K_{11}=Df'(1)-\frac12f''(1)\left[ - (R-\tfrac12A_+)^2+\tfrac12A_-^2+2A_{12}^2-(G_-^2+4G_{12}G_{21}+4\bar JJ) - \right] -\end{equation} -and likewise a Gaussian integral in the Grassmann variables with kernel -\begin{equation} - K'=f'(1)\begin{bmatrix} - 0 & G_{11} & J & G_{21} \\ - -G_{11} & 0 & -G_{12} & \bar J \\ - -J & G_{12} & 0 & G_{22} \\ - -G_{21} & -\bar J & -G_{22} & 0 - \end{bmatrix} -\end{equation} -The effective action then has the form -\begin{equation} - \mathcal S - =\hat m+\frac12i\epsilon A_--\frac\alpha2\left( - \log\det K-\log\det K'+V_0^2(K^{-1})_{22} - \right)+\mathcal V -\end{equation} -It is not helpful to write out this entire expression, which is quite large. -However, we only find saddle points of this action with $\bar -J=J=G_-=\hat X_1=\hat X_2=m_1=m_2=A_{12}=0$ and $G_{21}=G_{12}$. Setting these variables to zero, we find -\begin{align} - \notag - \mathcal S - =\hat m - -\alpha\frac12\log\frac{ - f'(1)(Df(1)+R^2f'(1))-(\frac12(R-A_+)^2+A_-^2-2G_{12}^2)f(1)f''(1) - }{ - [\frac12(R+A_+)^2-2G_{12}^2]f'(1)^2 - } - \\ - \notag - +\frac12(1-\alpha)\log\frac{ - 4(A_+^2-A_-^2) - }{ - \frac12(R+A_+)^2-2G_{12}^2 - } - +\frac12\log\frac{D(1-m^2)+R^2-2Rm\hat m+\hat m^2}{ - \frac12(R+A_+)^2-2G_{12}^2 - } - \\ - -\frac12\alpha V_0^2\left( - f(1)+\frac{R^2f'(1)^2}{Df'(1)-(\frac12(R-A_+)^2+A_-^2-2G_{12}^2)f''(1)} - \right)^{-1} -\end{align} -One solution to these equations is $A_-=G_{12}=0$ and $A_+=R^*$ with -$D$, $\hat m$, and $R$ exactly as for the Euler characteristic. The resulting effective -action as a function of $m$ is also exactly the same. There is another solution, this time with $A_+=R$, $A_-=G_{12}$, and -\begin{align} - &R=\frac{\alpha mf'(1)}{b^2}\big[ - V_0^2f'(1)^2(1-m^2)-f(1)b - \big] - \\ - &G_{12}^2 - =\frac{f'(1)mR}{f''(1)(1-m^2)b^2} - \big[\alpha V_0^2f'(1)^2f''(1)(1-m^2)^2-b^2-\alpha bf'(1)(f(1)-(1-m^2)f'(1)) - \big] -\end{align} -where we have defined the constant -\begin{equation} - b=(1-m^2)[f''(1)f(1)+f'(1)^2]-f(1)f'(1) -\end{equation} -The resulting form for the action is -\begin{align} - \mathcal S_\mathcal N(m) - =\frac12(1-\alpha)\log\left( - \frac{f''(1)(1-m^2)}{f'(1)(1-\alpha)} - \right) - -\frac12\alpha\log\left( - \frac{\alpha f'(1)V_0^2}b - \right) - -\frac12\alpha\frac{V_0^2\big[f''(1)(1-m^2)-f'(1)\big]+b}b -\end{align} -This solution is plotted alongside the solution that coincides with that of the -Euler characteristic in Fig. It is clear from this plot that the new solution -cannot be valid in the entire range of $m$, since it diverges as $m$ goes to 1 -where we know there are vanishingly few stationary points. However, there is a -single point $m_c$ where the two solutions coincide, and they have the -possibility of trading stability. This is given by -\begin{equation} - m_c^2 - =1-\frac{2(1-\alpha)f(1)f'(1)}{ - (2-\alpha)f(1)f''(1)+2(1-\alpha)f'(1)^2 - -\sqrt{\alpha f''(1)}\sqrt{4V_0^2(1-\alpha)f'(1)^2+\alpha f(1)^2f''(1)} - } -\end{equation} - -\begin{equation} - \mathcal S_\mathcal N(m) - =\begin{cases} - \mathcal S_\chi(m) & m^2\geq m_c^2 \\ - \mathcal S_{\ast}(m) & m^2<m_c^2 - \end{cases} -\end{equation} -This formula remains valid also in the regime when $m_c^2<0$, when the -complexity is given by the function $\mathcal S_\chi$ in the entire range -$m\in(-1,1)$. - -\begin{equation} - V_\text{on}^2=\frac{(1-\alpha)f'(1)^2-\alpha f(1)f''(1)}{\alpha f''(1)} -\end{equation} \section{The quenched shattering energy} \label{sec:1frsb} |