diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-09-05 17:49:59 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-09-05 17:49:59 +0200 |
commit | e7f379207b9e60591b07ae02fc304872e482ee33 (patch) | |
tree | cc3a1d07b127f1e33a33d0ea5852b2016d248673 | |
parent | 4fa9c980d9d793bdb3a2ad676346f8f3a0bbc476 (diff) | |
download | SciPostPhys_18_158-e7f379207b9e60591b07ae02fc304872e482ee33.tar.gz SciPostPhys_18_158-e7f379207b9e60591b07ae02fc304872e482ee33.tar.bz2 SciPostPhys_18_158-e7f379207b9e60591b07ae02fc304872e482ee33.zip |
Some changes.
-rw-r--r-- | figures.nb | 4975 | ||||
-rw-r--r-- | topology.tex | 101 |
2 files changed, 4973 insertions, 103 deletions
@@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 729520, 13943] -NotebookOptionsPosition[ 725323, 13867] -NotebookOutlinePosition[ 725718, 13883] -CellTagsIndexPosition[ 725675, 13880] +NotebookDataLength[ 951564, 18788] +NotebookOptionsPosition[ 942662, 18633] +NotebookOutlinePosition[ 943056, 18649] +CellTagsIndexPosition[ 943013, 18646] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -159,9 +159,8 @@ Cell[BoxData[{ "]"}]}]}]}]}], "Input", CellChangeTimes->{{3.933763497888567*^9, 3.9337637273614*^9}, 3.933763933334261*^9, {3.933763989719284*^9, 3.933763990111755*^9}, { - 3.9338438243456917`*^9, 3.933843826804023*^9}, 3.933843897783396*^9}, - CellLabel-> - "In[326]:=",ExpressionUUID->"41b24844-1147-4d0a-b487-e8350b1d5c79"], + 3.933843824345691*^9, 3.933843826804023*^9}, 3.933843897783396*^9}, + CellLabel->"In[1]:=",ExpressionUUID->"41b24844-1147-4d0a-b487-e8350b1d5c79"], Cell[BoxData[{ RowBox[{ @@ -224,8 +223,7 @@ Cell[BoxData[{ CellChangeTimes->{{3.9337642116352386`*^9, 3.933764290035758*^9}, { 3.933764331668426*^9, 3.933764440182709*^9}, {3.9337652714948797`*^9, 3.933765271654711*^9}}, - CellLabel-> - "In[315]:=",ExpressionUUID->"b03bc860-b1c0-4e93-9060-8118f88e47e4"], + CellLabel->"In[3]:=",ExpressionUUID->"b03bc860-b1c0-4e93-9060-8118f88e47e4"], Cell[BoxData[ RowBox[{ @@ -308,8 +306,7 @@ Cell[BoxData[ MultilineFunction->None], "[", "1", "]"}], "2"]}], ")"}]}], ")"}]}]}]], "Input", CellChangeTimes->{{3.933764707636427*^9, 3.933764736628632*^9}}, - CellLabel-> - "In[319]:=",ExpressionUUID->"b26718dc-2cea-4fdb-b7ee-88d00ee5b4db"], + CellLabel->"In[7]:=",ExpressionUUID->"b26718dc-2cea-4fdb-b7ee-88d00ee5b4db"], Cell[BoxData[ RowBox[{ @@ -331,8 +328,7 @@ Cell[BoxData[ SuperscriptBox["f", "\[Prime]", MultilineFunction->None], "[", "1", "]"}]]]}]], "Input", CellChangeTimes->{{3.933764828238638*^9, 3.933764852086349*^9}}, - CellLabel-> - "In[320]:=",ExpressionUUID->"08648c98-5e11-49e5-9ecf-4568bf068ad0"], + CellLabel->"In[8]:=",ExpressionUUID->"08648c98-5e11-49e5-9ecf-4568bf068ad0"], Cell[BoxData[ RowBox[{ @@ -353,8 +349,154 @@ Cell[BoxData[ "]"}]}]}]], "Input", CellChangeTimes->{{3.933765005098021*^9, 3.9337650409542227`*^9}, { 3.93376526778261*^9, 3.933765267958608*^9}}, - CellLabel-> - "In[321]:=",ExpressionUUID->"336506fe-ed5b-44be-8723-7d5b12b2b85d"], + CellLabel->"In[9]:=",ExpressionUUID->"336506fe-ed5b-44be-8723-7d5b12b2b85d"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"\[ScriptCapitalS]\[ScriptCapitalN]", "[", + RowBox[{"f_", ",", "\[Alpha]_", ",", "V0_", ",", "\[Epsilon]_"}], "]"}], + "[", + RowBox[{"m_", ",", "mh_", ",", "Ap_", ",", "Am_", ",", "D_", ",", "R_"}], + "]"}], ":=", + RowBox[{"mh", "+", + RowBox[{ + FractionBox["1", "2"], "\[ImaginaryI]", " ", "\[Epsilon]", " ", "Am"}], + "-", + RowBox[{"\[Alpha]", " ", + FractionBox["1", "2"], + RowBox[{"Log", "[", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{"D", " ", + RowBox[{"f", "[", "1", "]"}]}], "+", + RowBox[{ + SuperscriptBox["R", "2"], + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}]}]}], ")"}]}], "-", + RowBox[{ + FractionBox["1", "2"], + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"R", "-", + RowBox[{ + FractionBox["1", "2"], "Ap"}]}], ")"}], "2"], "+", + RowBox[{ + FractionBox["1", "2"], + SuperscriptBox["Am", "2"]}]}], ")"}], + RowBox[{"f", "[", "1", "]"}], + RowBox[{ + RowBox[{"f", "''"}], "[", "1", "]"}]}]}], + RowBox[{ + FractionBox["1", "4"], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"R", "+", + RowBox[{ + FractionBox["1", "2"], "Ap"}]}], ")"}], "2"], + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}], "2"]}]], "]"}]}], "-", + RowBox[{"\[Alpha]", " ", + FractionBox["1", "2"], + RowBox[{"Log", "[", + FractionBox[ + RowBox[{ + SuperscriptBox["\[Epsilon]", "2"], "+", + RowBox[{"\[ImaginaryI]", " ", "\[Epsilon]", " ", + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}], " ", "Am"}], "+", + RowBox[{ + FractionBox["1", "4"], + RowBox[{"(", + RowBox[{ + SuperscriptBox["Ap", "2"], "-", + SuperscriptBox["Am", "2"]}], ")"}], + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}], "2"]}]}], + RowBox[{ + FractionBox["1", "4"], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"R", "+", + RowBox[{ + FractionBox["1", "2"], "Ap"}]}], ")"}], "2"], + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}], "2"]}]], "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], + RowBox[{"Log", "[", + FractionBox[ + RowBox[{ + RowBox[{"D", + RowBox[{"(", + RowBox[{"1", "-", + SuperscriptBox["m", "2"]}], ")"}]}], "+", + SuperscriptBox["R", "2"], "-", + RowBox[{"2", "R", " ", "m", " ", "mh"}], "+", + SuperscriptBox["mh", "2"]}], + RowBox[{ + FractionBox["1", "4"], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"R", "+", + RowBox[{ + FractionBox["1", "2"], "Ap"}]}], ")"}], "2"]}]], "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], + RowBox[{"Log", "[", + FractionBox[ + RowBox[{ + SuperscriptBox["Ap", "2"], "-", + SuperscriptBox["Am", "2"]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"R", "+", + RowBox[{ + FractionBox["1", "2"], "Ap"}]}], ")"}], "2"]], "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], "\[Alpha]", " ", + SuperscriptBox["V0", "2"], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"f", "[", "1", "]"}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["R", "2"], + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}], "2"]}], + RowBox[{ + RowBox[{"D", " ", + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"R", "-", + RowBox[{ + FractionBox["1", "2"], "Ap"}]}], ")"}], "2"], "+", + RowBox[{ + FractionBox["1", "2"], + SuperscriptBox["Am", "2"]}]}], ")"}], + RowBox[{ + RowBox[{"f", "''"}], "[", "1", "]"}]}]}]]}], ")"}], + RowBox[{"-", "1"}]]}]}]}]], "Input", + CellChangeTimes->{{3.934536700056289*^9, 3.934536857209461*^9}}, + CellLabel->"In[10]:=",ExpressionUUID->"c1297907-e97f-4b0c-9644-ead31698af8d"], Cell[BoxData[ RowBox[{ @@ -365,8 +507,7 @@ Cell[BoxData[ FractionBox["1", "2"], SuperscriptBox["q", "3"]}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.933764758981324*^9, 3.933764760532564*^9}}, - CellLabel-> - "In[322]:=",ExpressionUUID->"bc0c79a5-5d5f-41ea-a0ca-c421c1cc8550"] + CellLabel->"In[11]:=",ExpressionUUID->"bc0c79a5-5d5f-41ea-a0ca-c421c1cc8550"] }, Open ]], Cell[CellGroupData[{ @@ -8898,7 +9039,7 @@ q\",FontSlant->\"Italic\"]\)) = \!\(\*StyleBox[\"q\",FontSlant->\"Italic\"]\)\ "]"}]}]], "Input", CellChangeTimes->{{3.933130807414353*^9, 3.933130962434251*^9}, { 3.933131005229073*^9, 3.933131018221747*^9}, {3.933131931462623*^9, - 3.933131931669272*^9}, {3.9331320528155007`*^9, 3.933132073576548*^9}, { + 3.933131931669272*^9}, {3.933132052815501*^9, 3.933132073576548*^9}, { 3.933132385070485*^9, 3.933132391238607*^9}, {3.933310215384925*^9, 3.933310244866306*^9}, {3.933310477573464*^9, 3.93331050385329*^9}, { 3.933310538394132*^9, 3.933310539489828*^9}, {3.93331836020802*^9, @@ -8924,13 +9065,13 @@ q\",FontSlant->\"Italic\"]\)) = \!\(\*StyleBox[\"q\",FontSlant->\"Italic\"]\)\ 3.933607352103284*^9}, {3.933607421094617*^9, 3.933607429355875*^9}, { 3.933607460446582*^9, 3.933607460756509*^9}, {3.933607536738978*^9, 3.9336077495946207`*^9}, {3.933607814216325*^9, 3.933607814793643*^9}, { - 3.933607876247958*^9, 3.933607877101968*^9}, {3.9336079388587213`*^9, + 3.933607876247958*^9, 3.933607877101968*^9}, {3.933607938858721*^9, 3.933607966049019*^9}, {3.933608022916145*^9, 3.933608023099994*^9}, { 3.933608176451635*^9, 3.933608247402646*^9}, {3.93360833177718*^9, 3.933608397322925*^9}, 3.933608442213436*^9, {3.933611008506209*^9, 3.9336110103187523`*^9}, {3.933613217396338*^9, 3.933613219360433*^9}, { 3.933645952631649*^9, 3.93364597175183*^9}, {3.933764474321073*^9, - 3.9337644853208847`*^9}}, + 3.933764485320884*^9}}, CellLabel->"In[32]:=",ExpressionUUID->"6c065066-6bf9-4f3a-a1a0-0b9cba9f452c"], Cell[BoxData[ @@ -10092,7 +10233,7 @@ RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\ 3.933606997960177*^9, {3.933607081535796*^9, 3.933607087449753*^9}, 3.933607130244859*^9, 3.933607779136389*^9, {3.933607869545397*^9, 3.933607884666913*^9}, {3.933607931542312*^9, 3.933607961289904*^9}, - 3.933608027846594*^9, {3.9336084053812013`*^9, 3.93360841956775*^9}, { + 3.933608027846594*^9, {3.933608405381201*^9, 3.93360841956775*^9}, { 3.9336084525235553`*^9, 3.9336084727059517`*^9}, 3.933608532849478*^9, 3.93361125227866*^9, 3.933613164896912*^9, 3.933613225927831*^9, 3.933764511124601*^9}, @@ -10113,7 +10254,7 @@ search.\"", 2, 33, 5, 23918575073640290210, "Local"}, 3.933606997960177*^9, {3.933607081535796*^9, 3.933607087449753*^9}, 3.933607130244859*^9, 3.933607779136389*^9, {3.933607869545397*^9, 3.933607884666913*^9}, {3.933607931542312*^9, 3.933607961289904*^9}, - 3.933608027846594*^9, {3.9336084053812013`*^9, 3.93360841956775*^9}, { + 3.933608027846594*^9, {3.933608405381201*^9, 3.93360841956775*^9}, { 3.9336084525235553`*^9, 3.9336084727059517`*^9}, 3.933608532849478*^9, 3.93361125227866*^9, 3.933613164896912*^9, 3.933613225927831*^9, 3.933764511234015*^9}, @@ -11827,7 +11968,7 @@ StyleBox[\\\"q\\\",FontSlant->\\\"Italic\\\"]\\)) = \\!\\(\\*FractionBox[\\(1\ 3.9336078849239283`*^9}, {3.933607931901306*^9, 3.933607961549466*^9}, 3.9336080281379437`*^9, {3.933608405648792*^9, 3.933608419823503*^9}, { 3.933608452793439*^9, 3.9336084729642363`*^9}, 3.9336085331002*^9, - 3.933611252583295*^9, 3.9336131652998853`*^9, 3.933613226715407*^9, + 3.933611252583295*^9, 3.933613165299885*^9, 3.933613226715407*^9, 3.933764511454769*^9}, CellLabel->"Out[33]=",ExpressionUUID->"0bb4ebbd-525a-40a9-8738-739ec949f19e"] }, Open ]], @@ -12013,7 +12154,7 @@ q\",FontSlant->\"Italic\"]\)) = \!\(\*FractionBox[\(1\), \ "]"}]}]], "Input", CellChangeTimes->{{3.933130807414353*^9, 3.933130962434251*^9}, { 3.933131005229073*^9, 3.933131018221747*^9}, {3.933131931462623*^9, - 3.933131931669272*^9}, {3.9331320528155007`*^9, 3.933132073576548*^9}, { + 3.933131931669272*^9}, {3.933132052815501*^9, 3.933132073576548*^9}, { 3.933132385070485*^9, 3.933132391238607*^9}, {3.933310215384925*^9, 3.933310244866306*^9}, {3.933310477573464*^9, 3.93331050385329*^9}, { 3.933310538394132*^9, 3.933310539489828*^9}, {3.93331836020802*^9, @@ -12089,8 +12230,8 @@ RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\ 3.933602458238138*^9, 3.933602541152406*^9}, 3.933606134597458*^9, { 3.933606169759362*^9, 3.933606225201994*^9}, 3.933606364469584*^9, 3.933606401972956*^9, 3.933606435833246*^9, {3.9336065020498123`*^9, - 3.933606524830101*^9}, {3.9336069236571827`*^9, 3.933606968034886*^9}, - 3.933607005008314*^9, {3.933607092010663*^9, 3.9336071222646213`*^9}, { + 3.933606524830101*^9}, {3.933606923657182*^9, 3.933606968034886*^9}, + 3.933607005008314*^9, {3.933607092010663*^9, 3.933607122264621*^9}, { 3.933607231288189*^9, 3.9336072573187447`*^9}, 3.933607807468174*^9, 3.933607890027107*^9, 3.933607926885668*^9, 3.933607957829265*^9, 3.933608031050617*^9, 3.933608093208263*^9, {3.933608486107229*^9, @@ -13831,7 +13972,7 @@ StyleBox[\\\"q\\\",FontSlant->\\\"Italic\\\"]\\)) = \\!\\(\\*FractionBox[\\(1\ 3.933607005254771*^9, {3.933607092270212*^9, 3.933607122514327*^9}, { 3.933607231552359*^9, 3.933607257602429*^9}, 3.933607807950858*^9, 3.9336078903081627`*^9, 3.933607927177822*^9, 3.933607958076277*^9, - 3.9336080313122993`*^9, 3.933608093487675*^9, {3.933608486379965*^9, + 3.933608031312299*^9, 3.933608093487675*^9, {3.933608486379965*^9, 3.933608503000668*^9}, {3.933608534878494*^9, 3.933608718070617*^9}, { 3.93360877133377*^9, 3.9336088763278103`*^9}, {3.933609204975422*^9, 3.933609210311354*^9}, 3.93361125421931*^9, 3.933613174505416*^9, @@ -13862,11 +14003,4636 @@ Cell[BoxData[{ 3.933607821113494*^9, 3.933607827714554*^9}, {3.933764562833202*^9, 3.93376457473697*^9}}, CellLabel->"In[35]:=",ExpressionUUID->"1b485599-abd1-4bc0-967d-165fc92d833b"] -}, Closed]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Complexity solutions", "Subsection", + CellChangeTimes->{{3.934536883298595*^9, + 3.934536887928734*^9}},ExpressionUUID->"b535800b-9d38-4d4f-9e23-\ +c69cf4d429fb"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"\[ScriptCapitalS]SSG", "=", + RowBox[{ + RowBox[{ + RowBox[{"\[ScriptCapitalS]\[ScriptCapitalN]", "[", + RowBox[{"f", ",", "\[Alpha]", ",", + RowBox[{"e", "/", + SuperscriptBox["\[Alpha]", + RowBox[{"1", "/", "2"}]]}], ",", "0"}], "]"}], "[", + RowBox[{"m", ",", + OverscriptBox["m", "^"], ",", "Ap", ",", "Am", ",", "D", ",", "R"}], + "]"}], "/.", + RowBox[{"\[Alpha]", "->", "0"}]}]}], ";"}]], "Input", + CellChangeTimes->{{3.934538656718585*^9, 3.934538666139331*^9}}, + CellLabel->"In[53]:=",ExpressionUUID->"f9bfb54c-f8f3-4525-abeb-233750cee79a"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"eqsSSG", "=", + RowBox[{ + RowBox[{"D", "[", + RowBox[{"\[ScriptCapitalS]SSG", ",", + RowBox[{"{", + RowBox[{"{", + RowBox[{"m", ",", "Ap", ",", "Am", ",", "R", ",", "D", ",", + OverscriptBox["m", "^"]}], "}"}], "}"}]}], "]"}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + OverscriptBox["m", "^"], "->", "0"}], ",", + RowBox[{"\[Alpha]", "->", "0"}]}], "}"}]}]}], ";"}]], "Input", + CellChangeTimes->{{3.932214257475527*^9, 3.932214268153445*^9}, { + 3.932214869907028*^9, 3.9322148735066967`*^9}, {3.932215200655984*^9, + 3.932215233474107*^9}, {3.932215451539316*^9, 3.932215453378544*^9}, { + 3.932229880497292*^9, 3.932229880825441*^9}, {3.932620786063859*^9, + 3.932620788144357*^9}, {3.933426944708337*^9, 3.933426950520589*^9}, { + 3.933426986588248*^9, 3.933426987275653*^9}, {3.933574757154237*^9, + 3.933574761114868*^9}, {3.9335748170048647`*^9, 3.9335748231966677`*^9}, + 3.933683629572822*^9, {3.934535930182865*^9, 3.934535932942906*^9}, { + 3.934536927002022*^9, 3.934536968555012*^9}, {3.934537024932032*^9, + 3.934537025059824*^9}, {3.934537135814292*^9, 3.93453716340692*^9}, { + 3.934538655675556*^9, 3.9345386696992064`*^9}}, + CellLabel->"In[54]:=",ExpressionUUID->"7618c6de-8d4a-471b-b096-c27a59d6c675"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"solD", "=", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{"0", "==", + RowBox[{"Last", "[", "eqsSSG", "]"}]}], ",", "D"}], "]"}]}]], "Input", + CellChangeTimes->{{3.932230023944449*^9, 3.9322300400875196`*^9}, { + 3.934536976508133*^9, 3.934536981411325*^9}}, + CellLabel->"In[13]:=",ExpressionUUID->"f0210815-94c5-4cb1-80fe-bd2530af8882"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{"D", "\[Rule]", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "m"}], " ", "R"}], "+", + SuperscriptBox["R", "2"]}], + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["m", "2"]}]]}], "}"}], "}"}]], "Output", + CellChangeTimes->{{3.932230026965228*^9, 3.93223004033401*^9}, + 3.932270560364152*^9, 3.932620573390811*^9, 3.932620792728594*^9, + 3.932652197343685*^9, 3.932740126240587*^9, 3.932829357180453*^9, + 3.933043263351121*^9, 3.933071538058464*^9, 3.933073423140627*^9, { + 3.933316076158836*^9, 3.933316086928713*^9}, 3.933319495630125*^9, + 3.933378770988386*^9, 3.933425680648751*^9, 3.93358600713827*^9, + 3.933656298530027*^9, 3.933683641285413*^9, 3.933683753828316*^9, + 3.9338818638356457`*^9, 3.93445363379592*^9, 3.934533772871214*^9, + 3.934535877369572*^9, 3.934535933646496*^9, 3.934536107945947*^9, { + 3.934536973428409*^9, 3.9345369816131983`*^9}, {3.934537025770535*^9, + 3.9345370543126583`*^9}, 3.934537171844405*^9, 3.93453723507034*^9}, + CellLabel->"Out[13]=",ExpressionUUID->"fe6a90df-8284-4593-ad95-18776dee12ba"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"eqsSSG2", "=", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{ + RowBox[{"Most", "[", + RowBox[{"Drop", "[", + RowBox[{"eqsSSG", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{ + RowBox[{"D", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "1", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + SuperscriptBox["Am", "2"], "2"], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["Ap", "2"]}], "+", "R"}], ")"}], "2"]}], ")"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "1", "]"}]}]}], "->", + RowBox[{ + RowBox[{"(", + RowBox[{"y", "-", " ", + RowBox[{ + SuperscriptBox["R", "2"], + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}], "2"]}]}], ")"}], "/", + RowBox[{"f", "[", "1", "]"}]}]}]}], "/.", + RowBox[{"solD", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.934537761043166*^9, 3.93453783814727*^9}, { + 3.9345378767164507`*^9, 3.934537899900532*^9}, {3.934538386406706*^9, + 3.934538432639037*^9}}, + CellLabel->"In[48]:=",ExpressionUUID->"94b6c17c-655e-47eb-9104-1a3e8efc5930"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"Am", " ", + RowBox[{"(", + RowBox[{ + FractionBox["1", + RowBox[{ + SuperscriptBox["Am", "2"], "-", + SuperscriptBox["Ap", "2"]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["e", "2"], " ", + SuperscriptBox["R", "2"], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "1", "]"}], "2"], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "1", "]"}]}], + RowBox[{"4", " ", + SuperscriptBox["y", "2"]}]]}], ")"}]}], ",", + RowBox[{ + FractionBox["1", "m"], "-", + FractionBox["4", + RowBox[{"Ap", "+", + RowBox[{"2", " ", "R"}]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["e", "2"], " ", "R", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "1", "]"}], "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"4", " ", "y"}], "+", + RowBox[{"R", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "4"}], " ", "R", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "1", "]"}], "2"]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"Ap", "-", + RowBox[{"2", " ", "R"}]}], ")"}], " ", + RowBox[{"f", "[", "1", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "1", "]"}]}]}], ")"}]}]}], + ")"}]}], + RowBox[{"4", " ", + SuperscriptBox["y", "2"], " ", + RowBox[{"f", "[", "1", "]"}]}]]}], ",", + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{"-", + FractionBox["1", "m"]}], "+", "m", "+", + FractionBox[ + RowBox[{ + SuperscriptBox["e", "2"], " ", + SuperscriptBox["R", "3"], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "1", "]"}], "3"]}], + SuperscriptBox["y", "2"]]}], + RowBox[{"2", " ", "R"}]]}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.934537762962049*^9, {3.934537793608653*^9, 3.93453783834146*^9}, { + 3.934537884451329*^9, 3.934537900772882*^9}, {3.93453836907192*^9, + 3.934538433617627*^9}}, + CellLabel->"Out[48]=",ExpressionUUID->"a47fe3af-36d2-4287-bd83-2a93e3914f03"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"sCompSSG", "=", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"0", "==", + RowBox[{"Append", "[", + RowBox[{"eqsSSG2", ",", + RowBox[{ + RowBox[{ + RowBox[{"D", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "1", "]"}]}], "-", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + SuperscriptBox["Am", "2"], "2"], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["Ap", "2"]}], "+", "R"}], ")"}], "2"]}], ")"}], + " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "1", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"y", "-", " ", + RowBox[{ + SuperscriptBox["R", "2"], + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "'"}], "[", "1", "]"}], "2"]}]}], ")"}], "/", + RowBox[{"f", "[", "1", "]"}]}]}], "/.", + RowBox[{"solD", "[", + RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}]}], "/.", + RowBox[{"f", "->", + RowBox[{"Function", "[", + RowBox[{"q", ",", + RowBox[{ + FractionBox["1", "2"], + SuperscriptBox["q", "3"]}]}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"Ap", ",", "Am", ",", "R", ",", "y"}], "}"}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.932214223353943*^9, 3.932214306563463*^9}, { + 3.932214875867169*^9, 3.932214889164859*^9}, {3.9322152078653593`*^9, + 3.932215251202077*^9}, {3.932215455891472*^9, 3.932215461499466*^9}, { + 3.932215582290704*^9, 3.932215587840426*^9}, {3.932229989487039*^9, + 3.93222998970985*^9}, {3.932230227888349*^9, 3.932230238008058*^9}, { + 3.932230395510715*^9, 3.9322303981675262`*^9}, {3.932230637513133*^9, + 3.9322306434171143`*^9}, {3.932230695890707*^9, 3.932230696306739*^9}, { + 3.932230914229083*^9, 3.932230914556213*^9}, {3.932231202503786*^9, + 3.932231202663443*^9}, {3.932620635538441*^9, 3.9326206362023087`*^9}, + 3.933683703488313*^9, {3.934534437907224*^9, 3.934534447346673*^9}, { + 3.9345344808441353`*^9, 3.934534481019243*^9}, {3.934534620542678*^9, + 3.93453463578312*^9}, {3.934534865828146*^9, 3.934534869131598*^9}, { + 3.934534916717072*^9, 3.934534938861109*^9}, {3.934537308153323*^9, + 3.934537337401829*^9}, {3.934537905861642*^9, 3.934537927509416*^9}, { + 3.934538444986969*^9, 3.93453844768743*^9}}, + CellLabel->"In[49]:=",ExpressionUUID->"baaf63c8-5be4-4d2a-a22b-7dc91aa7910c"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Chop", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Rest", "[", "eqsSSG", "]"}], "/.", + RowBox[{"solD", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "/.", "sCompSSG"}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"m", "->", "0.5"}], ",", + RowBox[{"f", "->", + RowBox[{"Function", "[", + RowBox[{"q", ",", + RowBox[{ + FractionBox["1", "2"], + SuperscriptBox["q", "3"]}]}], "]"}]}], ",", + RowBox[{"e", "->", "1"}]}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.934538722204956*^9, 3.934538768829483*^9}}, + CellLabel->"In[69]:=",ExpressionUUID->"f413f90a-2bbe-4119-afe0-c4eeb6f72ad3"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.75`"}], ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.75`"}], ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.`"}], ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.`"}], ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{{3.934538740635037*^9, 3.9345387703729973`*^9}}, + CellLabel->"Out[69]=",ExpressionUUID->"88b56873-7ab9-4829-8db3-a20d0df14d25"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"pCompSSG", "=", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"\[ScriptCapitalS]SSG", "/.", + RowBox[{"solD", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "/.", + RowBox[{"{", + RowBox[{ + OverscriptBox["m", "^"], "->", "0"}], "}"}]}], "/.", + RowBox[{"sCompSSG", "[", + RowBox[{"[", + RowBox[{"{", + RowBox[{"1", ",", "3", ",", "11"}], "}"}], "]"}], "]"}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"f", "->", + RowBox[{"Function", "[", + RowBox[{"q", ",", + RowBox[{ + FractionBox["1", "2"], + SuperscriptBox["q", "3"]}]}], "]"}]}], ",", + RowBox[{"e", "->", "1"}]}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "0.505", ",", "0.595"}], "}"}], ",", + RowBox[{"PlotRange", "->", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0.505", ",", "0.595"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.0175"}], ",", "0.0025"}], "}"}]}], "}"}]}], ",", + RowBox[{"Frame", "->", "True"}], ",", + RowBox[{"FrameStyle", "->", "Black"}], ",", + RowBox[{"LabelStyle", "->", + RowBox[{"{", + RowBox[{ + RowBox[{"FontFamily", "->", "\"\<Bitstream Charter\>\""}], ",", + RowBox[{"FontSize", "->", "12"}], ",", "Black"}], "}"}]}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.932214339117908*^9, 3.932214382006295*^9}, { + 3.932214450170501*^9, 3.932214450649657*^9}, {3.93221449166119*^9, + 3.932214494979043*^9}, {3.932214632416708*^9, 3.932214632760862*^9}, { + 3.932214765406888*^9, 3.9322147657266893`*^9}, {3.9322152419140244`*^9, + 3.932215261163375*^9}, {3.932215415369642*^9, 3.932215435802246*^9}, { + 3.932231242931428*^9, 3.93223129801141*^9}, {3.93223137326343*^9, + 3.932231444633721*^9}, {3.932266415155883*^9, 3.932266422469369*^9}, + 3.932620603322052*^9, {3.9326207128537397`*^9, 3.932620713693235*^9}, { + 3.932656261301601*^9, 3.932656261893819*^9}, {3.932656291911154*^9, + 3.932656436196875*^9}, {3.932656527440961*^9, 3.932656549787036*^9}, { + 3.932656601171941*^9, 3.932656631148546*^9}, {3.933319611977671*^9, + 3.933319618832816*^9}, {3.933586403075109*^9, 3.933586437972973*^9}, { + 3.933586508279084*^9, 3.93358651634273*^9}, {3.933656503164935*^9, + 3.933656503804769*^9}, {3.933656553518437*^9, 3.933656554037715*^9}, + 3.933656759338773*^9, {3.9336841625702753`*^9, 3.933684162681262*^9}, { + 3.934454115553474*^9, 3.934454122931615*^9}, {3.9345351427362003`*^9, + 3.934535268298639*^9}, {3.934538674428679*^9, 3.934538716372547*^9}, { + 3.934538784630959*^9, 3.934538943592704*^9}, {3.9345390343472147`*^9, + 3.934539046442832*^9}, {3.934539079331859*^9, 3.934539150925096*^9}}, + CellLabel->"In[84]:=",ExpressionUUID->"dcf47297-6e73-48db-95c6-2be317bfb5b5"], + +Cell[BoxData[ + GraphicsBox[ + InterpretationBox[{ + TagBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2], + Opacity[1.], LineBox[CompressedData[" +1:eJwd1Xk8lOsXAPDJRZE1e3KlJG7SglTUGVmGbPMqst7IkjYVXSTLSIlx7YVU +QrZciQilvIqIEJIkMa8IhSxFpfid+f0xn/l8P+d5zrOfV+nQSWsPHhqN1os/ +7v8xt7KQkHgOLFPbKFFfziaTlb9PX+KaGeH0qZRN2mj9tYQ/gQORtea7VsSx +yVf7YhV4EtHJPFcTTdikVqf7AqA3Zy5dXqbDJmekLR1OoJsW6KWnNrBJW5uR +jB9or6/axh/52GS37R7lqSTsP3GtSPZZFNlnP/sX5woHaJAS8IkRRU4c38N3 ++yoHgh4sn9niEknyHNfYF5jJAcMU9Tux+RGkz57GraloCcWs7H1ZEaRiamLt +ODpVUUc5PD6CfGChMHEkC8d7+9ql2S+C/GcVKWlyiwN6V57rK5pGkCPNVl1S +ORxo6y0TT/t8kdRauVw8Np8DJjrHz7TrXSRbN562L0EPvquR5GhfJDWc3+Y9 +LeTAQ1n5wAzfC2Tal9KDI3cxvz647XsfTto9Eub1ruaAd77JprEjYeTe35FC +sSQH4g9JKDN3hJGrW6ufzDRxYHqnIsdsWSjZVWYSqdXKAWlPfpa4aAjZLOoU +fq6XA68ColkdmoFkkVWFNN8YB5z0ChV6vPxI7afiYRd+4vxJwXNvNX3Jbe+K +onUFKQjgEZqxEzpFXpQs4LstR0HbSs7yL8FHyaM2D2oTlCjwMUz2XqAOk68N +6wWeoTMKj5hJth8mq5ZRMnEqFDxmDAqn63mSux+wbYVUKWCy4u3eVnuQK/OC +Gfs3UFCZK+bbXOtOiow8ZOTpUFDTI5TQLOlKmpxvE91uTAF9gHBZb+FApuVq +B9BsKWD15Rob5liTOz9/twr1wPa/hW+5fGSQ7PktGpdPUrDBL/t9yHo6aXgt +c2HGlwLa3xE5Jsk7SI/XVy0ywtGycsxdLHFywEwuZjGGgoQvN6w/OSiCopXr +iEMs5vN0tEm/sBomA/199yRie9Y+pcpyNWiily67loFeZ6dncFoXeO0sbpDo +aaP21YlJutDGujKrnUmBCb97tjaPHjR+Wy50GU272TvdZa8HLmWJWUJZFJSx +yw5ub9SD5wXuojFo2iXGcBfsgnpJaenQbHStqtUaXoD2kuhon3wK/KlQwmaX +PlTF7969oRjXn7Vo5u1uCPn7Ttl6oGnlRldnAg0hWTrL+yY3vqHoxuEEQxA7 +dm+3dAkFUkpG4/KkIajkNy/Oo2m77EzvSxtBY7uRUXIpBSOPnDeZFhtBIunw +pBnNmlL3LKozgiVb2/if36eAbSfsEn/OGLwm/Ay9KzAurpXQJMGALxErZ6PQ +CdLN58MUGGBwpufMQAV3f34Hn9NjgFyMq5xuJQWJAmtnrR0Z0MnHxw8PsH8Y +n8FcGQNAIalBtArbO6xwGiVM4EWC0rsbjyno9fi5g7POFGRFe0bKqynQEct8 ++JVlCuoWh/Qn0ax0mf7fiaaw/6Oi8laSAvNF04qMPFM4wTy37g6a9vjF7ckW +U6jbz6DdrkGbfn/uL78XfJz772c8xf7xE6z39/bCS29Rpfh69AJ/8spXZjB4 +8qnMS66Vu7QCB83g56l/REQasD81l1j/zQxUfN/NR6NZ5Sqp62TNIcQ/r+vS +c4w73Vzx29Ec0j/HV29rpCDlgCjVE2UO6iz4N7QJ44Yt6yU55uBFCti7vsD9 +DImTkpa1gMiEk3PerRgv47367a0FKC7nNBSiWWukgwpHLOD4hh98/eiCQx5u +SV8tYNB/yw7Plxh/EtDgJmkJKgo6M4faKHiYNxkyamkJ3//yXzDrwHyOKSLv +H1mCV10In1oX+v2C9J0YKzB4bSTqg9bKbmtzuW4FyRUHc7O58aBNjuG5VlBX +QGesfoP5L9uMi5NWoLTeqrUeHeeqwrjSbwWrE3iiZLqx/Wygsd0XKwhdr1GW +/5aChdTNAoEKTOh2jhDi78H36jf+yUiFCaZzMRIf3mO+Fg3Dl0FMiOV3qFrV +h+9rbV3b5TAmdEipuNly7WhebB3BBCet6nuNXDO6j1XEMcH79ARR3I8W0J9Q +zmKCcZ9lfDBFwVF/t0/xz5gwYxR8/yVaoGNpxX8vmKAgONw/iWa9Urmu2MqE +XNXQTe4D6BOcrrguJjzwuNu69wPOT/3mH1LDTOjrFxWWHeKeL41Wyk/Al3du +Tbpoevi3peICBHgt5DlFc+OtNqSlCAEfk+6eHUMLzNdn35AkgNfhlNnQR4wX +3M84rkzAY96J0yuHsb7NWA9mridArbMt6t4I5uOXzTKgE3DmeQK/xRjOJzgj +g+lDwGXfw1Hx6IV0ma6ifwiwdFOXaELTZ9s0IwIIUF2oV2SMY/5q5fLUEAL+ +fuO4/jPay8J/YG8EAb2av7brT+D+KKoW7GcTEFIq73kc3X+0RVTnXwIMb3oe +057EeApHVy2DgJKx0ilfrnf9k/goiwDpvqo6Ei1dTL5qzSHge+e1C5umcH7X +Kg/uKSCgULD9hto0evMB77ZSAmo1VLUWZvB+W4+d3VJHQP46NX33rxR4CP+4 +e6WBgEmxrt40NP3XQv3+RgIymGKXh9FbStN+VL4goOm/U6My3zBfyNqinS0E +MOgGez3RuU6BZdEvcf5UDs+KWVxvOONHeicBlSO3W7zQ98bnjom8IcAuiC4a +h2bZnjyh0E3AVpl38kJzON5WIb+z7wioTv9jJAbtM3RguLqPAHfX1j1i3ylw +dfw4uXSAgH1pzlWG6JraAjXTDwTUDBfoh6Np/VUO5CABvpsbMn6hzed31gUN +43lUBh7++QPzL84lt40RUMX3fHz7T/R1drfgBAGH9qfsPIJ2L7NZMofmmbjL ++oqmvTG3j5giINrmt5/NPH4vHaf6lGcIKF87dHUCTRNfZJd+I6CdP3ZO9Rfm +C6OfvDpLwNjoNhs3NEvwv2H/OQKUiiPFurlmK6f++YMAvaQt3it+Y3vXhvaP +6AdPakuM0ctcIDDpJwE6Wjb9AehztyzfbZ4n4F899UtPuO1XPRSW+EVAruLr +wXk0S/XA7cfodDmWruYCBc6aBl52vwk4adfuWYlOordeLFkgQLwwwHEIXbNE +TfXPRQLU45QeKC5if5Xel7fQWn+G+DDQF27b7J5Du9r4nrmMrrm+cj6VZg1B +21d1tC5yv2+arGVLrCFZ/tkmAdoA0NPmc06hSxZOxBiga2a3n2hHN1PSn4O5 +jizp+ovHGmZjhO+koNfIGAhZoZfke+VOc+NlR5Ma0KuixXk3LsF8fdojgn9Y +wzbvh66H0TVOxIAxmj+pLjgb/cje9VYw+riWkEIvmhYX3ZiPZke/4ePjGYC3 +Vb0Ha9GZP527mWi6q67VOPrRe/5t0eiaaa84Xl5ruNa/ZrQIvULW1kwEPXXL +bmoRTTOgiyig69ix85v+GIBB7yapP9GPTte4sNA7Qz+ypdB7LPYJ3kWzipU7 +BdFOm38dHuVaXkN+Fsfzl8h5tpYX/aFIrAd9YVDK2hkdO7hOqwKtorBTtQQ9 +dqNu3A/d8OhmXwe6ZjRa1AGtGnRR/Cs6V/372R3oq0NDGkf4BiCuJaujHPdL +xjNtLgxNF6k3S0V7uzgLZaJH3pxY7Y02Vx+7N4umDQlkTON5HBa9IraFH/N7 +5729jD4/vcv7GJpupd+4Cd21OenXPbSr2tagXDzviso4NQ6aZu/ZYoW2jSb7 +5JYOQPSlHcZdeD/WGKUI+aH3dApH8/zfmhmNaHqkZch2vG8cdeMmhWUD8CpH +L5Z7H9eon4+3RzM1YwdL8L7+294lXYpmJRkNFOL9zisLPTOOpq1t7JzD+/80 +RbVjvQC6WCNCFz3nHBhzHU3Pile9852AqEk53gjBAWhVMGbtwPe3YHRBl0TX +DG42svpKQFrmJ5/vXLvKyPyN77XDroI6uhxt4TXoie9Zv4FJWgnh+I6wfd04 +AcUuMzoF6JqtFcsOfCYgIERB4yk3HljU2PMJ62PU8AYt4QGw38bh8x/B+jWc +Z1+HlklqlN81RMDq7PBAORHs37fN2eYDd727OzeiP309n96D9crOkTkajaYf +UKNf5+D3iCeovR9tvXq6OxLrGy2sXPuDKK53eY7pC6yP/c6jk4XiOD7k7I9s +IkDgDTlVi45RHmC0Yz2Wlio/qLgCxxsX6Z2ux/rWfL41gWuRkS/6tQRcSHAw +f4pu2VhyNusJARXF/jkMCcw3VP9rw2MC/gd3jaMu + "]], LineBox[CompressedData[" +1:eJwV03sw1WkYB/BT7WxuNeW2WLkNm1sc5JDbwx63c+L8zo+sFbKskFvCjEvR +IYNKDmvDYAkrR4VyX8XB0swi61JkLemXWpfVImsph3388c47n/k+833feWde +9YCLbuf302g0Fq693bVypHJJlgJeaAQhV0dC6TerST5yFDhZeiV01pAwPvTl +eAO6qyaeH36XhMPp8/Za8hTY/qb/62w5CR9t8k280BwiT7KzjISk9RQNiS+w +T6rDP66QBPvpeiJBgQKvfcR/npkk+Iw0TY+haVkGkufSSFALK/lwVBH75ucF +qSkkzH2WJs5Fd/nfZZUlkxBh7m46uJfzggu64klILlvN6lVC5xYnVoaTUFxR +zPgHrTvMWogIJeFOhIFVszL2tz6SWXIjQf6a9ZlVdIZi39B9ggTtclGw0THs +l0ngnXAhIbDo8MQg2u0Wu+86k4Qey7ClKhXsP2h2kWFGwltxQVG+Gvax7qln +KJJwXWDZ0odeTh8NKZYnIdI67qm0OuZH/nQbPErCRpTjWvaeV59sroqT0Bl0 +s8ZEgwLFqeok510uiL2cY2WgeY3k45ktLuRKvx4L0aSgtc3a3mGSC84qh2Kb +tCiQnrDIX+viQviYoS9oU/DV6tLCwVwuzF6asc9D81RbPpXc4IJbubrxM7Rt +rN+4bDoXGDSBlJ0O+jKYrFzhwk5HU7e2Ls5bKZR4hHLh1qkhvU099KXah1NM +LvjJHW9vN6RApnP+c8VpAlS+s18eRtMcYxN3XxKQw8/4Q4KOHom6AEMExL4/ +1JyM5pW4iRW0EWD1QCk0yAhzX4vQqiwC/hZa0q8aU7DIvO8+60HAwPGTz01N +cP5hcjcYE/B4/YROmSkFFbJ6ZTqNHFhUCRY8Z2C+UdATHcOBtCy9WBkz7Gv5 +oC4RxIHSAWYtE21gJ6PW4M0B9xfxE7+jef1nq6KtOTD6A92s3pyCbxcNWHwp +DgRt3wwTO0XBA/MiWt2mK/A3awO7LbCvpsel+LYrnBxdV6uzQW/2sG0ELuA1 +NdCc6UjB2UCJQVEpG3ozK6x60DSvF8P6fDZIZfW82t4zo8KXdpUN2Tk7naed +KNjWKXXQvMAGDUa1RTt6vOUe5wybDU/KUht8nHF+mxU9o8yG7V9SB4zYeN9k +QkO1gAVX3qeKplwxlzyX3ZjiDPW3I1UV3CnYf6A+yWrSERI9r/nTPTAvmi4P +MHSELIvmTBk/CmSnVc63V30NfSyqkP899kWr2q5J2IE+PfxnqRgKVlqOtfY7 +mIKyiEmPjqXAfjmxPGTLBOZeldiZJ1BwpHirzWrXAJRNchyq0b3+WgVHDA3g +zafLAgUevtejpwt0JQ34t1ZTtTEFzy/0XNxnpAKTqmKRcbloyjNAOK8ulGxg +6a/dQUuFLDnNWAir66O6A+rR/aKV8RuOQm+zvzYkhHi/jncM3Z+4wgRd5oGa +Z3v/vaJT4aOH8K21KFk0hTk/L2b+R2/hm7rXOY3vMJ+rO2294yf8HziuHFo= + + "]], LineBox[CompressedData[" +1:eJxTTMoPSmViYGCQAGIQ/VFe94P280f2DTYnBMokEvaHPvnay/3rkT1DXoLc +WfOU/XGrakJ9gPwDdWxOJW4p+zMKmGV7QXyTx6fkQlP2V/0RWMP3G6jffxl3 +XVHK/gUiOqcE/wD1K8q5pq5N2f/GJYlN4t8je4fooLJryqn7m5aeq1Nhemx/ +YL7pCSfhtP092aFuqUA+w+rbHmFKafunGt7hXQaS1/yrmWuYtn/F3pdz1JmB +fCc53qX+afvPXmXZrcXy2L4h8GyQbU/afgk26+8GbI/tHeau3M3Plr5f6czB +fYVAfkPHPqNI0fT92pM82jaB5FmZOZappO+3kwsTNWEH2pfXecbTOX1/ilmh +sTkH0PwtU3bubEjfn/fn+69yIL/hqZ6c3IT0/eWH6g7tAPFlr99vnZ++v8uv +J9CKE8ifcbAyfl/6/skiwpLVnCDz9wRePJu+f86tmQ92g+T3mrS53U3fv2yB +woo/IP5LdvH9b9L3r09bnm/LBVR/WpDF+k/6fgDnBbQu + "]]}, + Annotation[#, "Charting`Private`Tag#1"]& ], + TagBox[ + {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2], + Opacity[1.], LineBox[CompressedData[" +1:eJwd03k8VPsbB/DhMrYpImvZkl1KEaF57IY5J5JKIkXhphgRbimjXNGqSIjS +JrTphkpytFhTSItSOJOSCF2l0qXfc35/zGte79fneb7f7/kuusFRPpvEWSxW +B/6Y/3QpKbUTh2kQisUH0N/9qdEd8TFOx2hgydmtj3qwmpo7a+eDOLTdkKFI +Nnc1pb1G16aCyX8976sNXU31p7WEamTSYFBa9dtAZTW1ojrqnmIWDT4V0voz +fFdRoVvqczqP4/iaIyWzpnypC71qpvrZNLhcP/aO3ehLvQ1UronMxdwwgDy3 +3Yf6SmzWKWbMvjT8eJkPxbGn9tBoFk/jlaGRD2Wr8ae7bx7m91eHhHUtp3Je +VLctOYm26FKRcllO+XptfCdRgPVn+jnBmt7Uo5zQ8t1oh9lt9R5FXlSzww3p +k4WY275Nv9TFpyT8yAIKXWk1tOdiGZ9qEx4ftzpDw/qLyx8uMuBTTd/kOFlo +VsMNx8ZbntT68mNnOWdpiHTPSQk096QaSzfKH0Kz1jx8PZbnQdXPVFFJOo+m +OXo9W92p+x8T9EKK0eqTvRs9nSlxFa+NZxgHxoUnyDpT0inDSb/RJSVT5VtL +nah7Be0GASWYPwmbcCCcqFofE5OVpeiUs26WPo5Uxkl9y82XaKi/W5p7zsmB +qqnuWuB+GXONGf4yz7jUnQwu17QMXfa1UPGwNVW8QrBqE2Nbt6Hp+tZUtsrZ +yNOM81ft3Vq9mFKI+Iercp0GM0X9oZJ+K8qguOX3LzSr/rbYKW9Lqqnd1TX7 +Bg3jgUWD8ekW1DHK/14LmmXU28k2taDEFraxGytoKKpIzd5w35QKH45zibyJ +eduBpGGeATWSqjGejl7QFn+1fUSfco59HSti8s5qr7sdcyn1QxvU7W7R0DMW +FKN8W496JinJhtuYS8tY8FJ0KNDMbJC/g67ljL/sUKYeHdXtKrhLg0Sv7Sax +4YkaNfnXHytraNg3WXN+e/K1GjMy2HEUzRI20l7ZbVzfD9pzF1I0mDZVJb+T +7uNu9d6pfwXN0pG65PbpK/ehrzurpJap32/lt1MStgX2VBTeZ77PpEY9WRla +I+V1M+qZ/erd5yquD31R91VbGc/88rWhUB8mBNunT29A2zTcP881AIOYrl8H +GBNhEVEJhrA7/uKLfY1oy02mq/qM4dRgRs3iJhq+fTuR6pVmCmZCOJjUjHmh +86G2AnMIp2TWbHhEQ9brTeKU9wJIOxr1PfIJ5uvCel0eLwJtud6Gy4z3r1T3 +m2EJW0x/Svag/8p9viuaZwl98RZLQlsxX+h5qavLEgw0rceC22h4Il5XcmHQ +Cn6YxE/xn2Ke59GYNWQN4Q93Sxq/YN7XS4UNdXbg/NxVfht6wiIuM0DOHrJv +BhWdZ3LB5Q9FdvbwsNTBXeclM/+fZHeZPegaej2pR9/TGtU9RywFnaPi6aqd +mHOjzhnkLIUkQ/Py4lc0SJ5h3+VJAnQGpnLYrzGvYx/l+gN4fD+k9O4tvl/x +4/J1qxzhMNv/zuxuzGd0+eZEOsJTZYOQVWjhEj9l71RHCLCs+aeJ8bmcpVsr +HCEyenh5WQ/6ucbpIEUncOtelrGLpuGWR6riggYn+KYlzb+HHjv8ttK11wm6 +e+Snqb3H+tBIxc7ZLjDSFdJsh97vGizYb+wC4VMXAw6gWbsyzSpcXeBD5rW/ +htDfZGI1GsNcQMJfwH//AfvtTmj13nWBuxLD0Rr9NBQ7czZcb3UB42dt6f98 +xP6fcwyS/FwhtvEomxzC+hVHgl/vcIOsmLD0DHRC97u/tY+4wbIQM6VmJl+c +F0cWuoHRVL22+2fs1zKcSda5wbqXaw0H0TZmKfJjX93gzaL/bByHMZ+zet/Y +NHfYfWNW6Bb05Uf5NtIa7uByOjTCahTHm9kf+DHXHZTj7No0v6K3maY15POg +WN/YcSPac2t04rcrPBhVePEmD80K6r5scYcHhd4KWf1osysdtice86D5kmBA +9RtzHonh5q944O7g7BmKdomel5s5yIPd9AVxxXEcXzeNQyt5wAdCwYr9A222 +7JZligdU6r3PHf6F/UD09np7Qjv78Hej/9ChlSNiAZ4wNLB4Zcj/ncXjhHmC +blmaQifjJuvvbxI94aC92b57k+jk5SZRFz1hKkZwOuM3DXJnvr+88d0TEm1m +P32CFvaPeqiK8yF7Vt18GZYIhHsDd1TJ8aGFVhnchWY90ltRo8UHTc+QCT8x +Ecgelt8W68gHseYZF66jZUpaE14t4wNnn5iX7R9YH9X6My+dD9XRteuF6K5O +//L8TD44kStkr6GFMkMWNnl8iFe6UKcnge7jpu8u5YPoNM9+miT2/71ll1Qz +H27eOmLcy0bbPb+rIEnAqgNUt7qUCHa4VoVPyhEwx/UEJw4t4dQheKXCeFFh +E1oYxMrI0iHgYPsLlRvS2F8g2fHQloCIX/Dhb1kR3F5uEmQeQcCUa4odhWa1 ++yx9KCAg78ynbT/Qwu2BX5ziCHjqd5PeLIe5UTlXIpkAxwZvyouDTjyrceI4 +AWXrx6xL0apZL1vWFRCQsFvT/D6TB43L/nmagOL0flPLaSLo1sw2FxUT4Nd/ +cc1D9N7kOeG8cgJ0zu/doT4d610PGP9xB9dvxn02D61m5B5zqBrr13oPHGBy +84oTOQ8ICBdPbO9BFzr7GJc2EXiulVbv5HG9zcXnkrsIUHgsvCepIAIFmu1Q ++5YAG5u951eiWXXU3rciAgQjXkqNaKHGqtjBAQJ6AgdGL89Ar53L1fpOgMxL +6ssD9F3vzKB1PwhQUa4M0lbE3Mphm/Mk9g/ExF9Ar044l6woQcInwwHJR0zu +s2jPJ0kSzLeJOU2hTyoMzg+UJuFUxNWqOCUR5G8pk30/jQT/7D3vrikx57vi +YqgCCeNfPmoMoIX0JPVcEftLKtLXzsTc8GrGDlUSfvc+je9G26i6tbrPxvFU +vcIclLGez+X1aJNgG1Nx6i/GegrvG3VJ8Ks5TZSgxRLOKy3XI2GmnkWyvooI +Ei+U5SsbklBKL0tchxa27qy4bkTC9P/WCg6hx1Kk6r8ZkzA7YOjGTFURBPM4 +bn7zSFDz/rjGGc1KbdXYYk4C3bWxLw0dRTStH5pPgrdURWMFk0eoenUuIGEo +eBZrhHE6y/5fCxLSapKtjdTQhZywnwtJyKuq1uahjQSalcmLSKjdvqwoj8lH +Vx5stSQhoL38bQfjks8Zp6xI0InIH5uhjutt+Fdx82IS+iRSZLzRrOipAm1r +Er7KER2H0OKlg7E1aMOIFVYt6FNBvgM8GxIWPrXly2ow8xdVVqPn5Q4q+KM/ +L+JbzF9CQpWkbHwqkz+TvReMfr7A1KgefeLok4bjaKclr86Kz8L5LbYduI5m +d9TeckCzflTwbqGHFVTGN6KrPbL2XUML6BkJteiJJ/MWJ6N9C+MnJpj+iXXz +PNHJfZvOes8WgehGSXIHrudNh5tBPFpoXbI5C1241dy+gnFzkoY6WmXvUt8v +6Ne/BK8O4vcZnZkMs9DE/P3IHRr343NV8EQs+ojAZrES+vqzlswraNYCMUtf +3L+4LVZKjWhLz8STX3B/baXzKWMtJt9QLsD9l7N4bFiEznodYrsYzyv1uY9Y +H5PHxZVN4Pnyo2xV52ijZ3pmFuP5nz/lUVKFtt2uG8YxJSHH/ovfGyZXjF66 +0ATP70VnpIYO+o1d7368X/WDe4x2oa+6SE1W6pOQXmxXWYdeyWF17cf7Gbk0 +vl5Rl5lvvpY63l/1CRP2RXQn+/CuP/C+K+zkqo2iZ6e1CJark5Bvc+iK/hwR +3F+3vtwD34d0Z5/HPjQrIHxOrBIJLdEtQXVo4ecgpz58X4cvVP3W0hNBwvhW +C0l8f+qw90wSmpUSVVWJ7zNvd/4zs7ki4FaVFHuxSDAp0v0Zj2Y1tW8u/Y+A +YZCRr2T84NW8mJ8ErLtTEz2C7r1yUiJsnIAjxE3CVF8Ec6N2ZWqOEWA3rdZb +gGZNtp71HiFgoV74rJ1oYZtLVvkwAf8D6M/5kQ== + "]], LineBox[CompressedData[" +1:eJwV0Hk01GsYB/C5Yax1hW64QuES0wlTyDIPZjLG/FrIFBGqMWO7KN1D1ml0 +iqgmSyfpoo0h2xGlLG+U6ibVaTnXlvRKFO3lFiP39cd73vM532d5z7t8V5xf ++AIajbabnPnbveBy8hcLDLSgxdFtYxTEehZvC7QizmvJkyAKhvcMcfLn/Wt6 +F9VCgd/Z5fY9837SZKF6lQIHmlzLYyUGSYOlxKuWgp9tjR1W1iTfh5d+LKbg +6LoHNt9tiN+Vl35OIHnEYgN7BvHw3cbzsRTEn/KnxxBLTha7siMpiDqS2DpE +fMK0a0dkCAVGTWOFd1aR3DjohoxLQegSy+vXV2NQJEx1DutQYBzGefeIWPLm +o8Gf2hTIjh/u17Al8zdzVabUKdj3fmFTOrFk9KLmUwUfXKsNo0R2JO8K9O54 +yYdJ5GKbYY8hnTPeMdfOh27LNU/XMkl9QP0CoZwPLV9XrSxdi6E9srA3aQsf +3hqL5U8dSH/hMtprKz4czLXZp+tI6lXN3MpN+FDSza5hE+vJurpT9fmw5VnS +vw+JaYORx+KV+PA4z9axzglD2CcsV3vpAyJFTrTaOgwTVbf5vY994Pj3GmGH +M5lnEYoacnxgzeOvprUs0j8X84Y+wIMHcG1yklhSLRYEPORBRE1asw0QP24u +PHmTB39n0TdXEtMSZy/0XeIBHfQzLriT/OudpOQUHjzMSigK8cSQMZEpYJrx +oPeSy/PTxDT8o8N6KQ8CB7qbsrwwjAuOGJm7e8OtrHOuncTuNWX1Xkxv0Mrt +fKEglrCY8QZ/eMMx2c92PhdDeYAsBPS8YYVDhfN14jb7lNe/zHChtVTaEOxN ++t2Yvk3PuKC4Ju228yH+cnaPQsSF1PfS2YENxGm1MwfTvKCuMNZEfwsGhw4l +JmPRekjelrnTVkDeF3M7bVUKB9hPwoYiiW9wBZpxURzQ2sQKOj9vq8tXzwZy +4F5rL4OxFYP6nEpLiB0Hbq2N81YQu3/IGC76wgb/bK1x3wAMRpnax8xz2bBQ +L2j1XWLa/soavwg2fNQcyhvdjsH/Mri8bPOEskf2s6HBJL9bUN/u5QknnZyF +90Ix3KOFhnYZe0AXD586vpv8h2tUjEk9wBUlj68980YLKkYzAQzTWRpqQgxT +/tqmBdsBBvP0BzcQU9+NFzVZAeTa7aBnE0viIwLjfrLAz6A3QRpO9p3IXS33 +YYFl2WmeixiDvrrUWaTqBkPjPRv/IqYxXxX1D7pCo6xZNhiJ4WWKTu4uDReY +OnxNOSiazIu8cjN6fB0s3Pmi0TEBw7eaEo3po0wwmmXb7t2HQdY3FcFKsIdX +L854OO3H0CtILjb0ZYARU7a+glg3OFw3LdsGRmZS5PoSDAm3FGkZYyZkjrnJ +5QNkf2NUvMjMEPpM1GITT5B9/dsk7/XMkGYDj/G5jLgqf1vDKhdUURffsauO +/H818616iRcKchyb0kAYNs85TJ0q24z2W7OVKntIfQHT49O0AI26zabPDmBo ++DEt/VEQhKLEh298eI1BrhutvHRxGIoYoBdnT2DIybxU9V1lJxK8+nZUcxrD +qyRGzDlHIQqpShVQxKyNqc+5XkIUEa+07ChxbXKP/KO/ECUrtKsXzWAINt1E +UXuFqEyPcW+xAsP1uaftNjVCNMnZRdf/iWHrb4k6OWbhSHrxQbr5ghFo7U9K +/0dHhHKjBV7hxO5aggt9y0Wo0G5wYTkxI5/z+ztbEZK3vTljqTQCyhncmWWb +RKjnmXKLtfIIHORyUytyREif7vKfLX0EJje9WB+oIkYr7ne07yF2ksqCS/TE +yCbP+1ADsf8ztRuvzcSIZbx1yRrVEQg+BTEHPMVI6LCH6ag2AorKML+hDDGK +Vfw3nUh833X0jttxMUrsTO9sJuZYLMkqKxGjIxtzfZ3VSW4ZPRbXJkb5eroG +KcStRZqHBu+L0Zn+ouEWYidNKpYaFKPyMlO5grh64k0pmhCjOlFFnJvGCFjd +PmfoMCNG/wPgFOpp + "]], + LineBox[{{0.548584807779583, -0.0016811695613057898`}, { + 0.5485891113408887, -0.0016789749014940094`}}]}, + Annotation[#, "Charting`Private`Tag#2"]& ], + TagBox[ + {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2], + Opacity[1.], LineBox[CompressedData[" +1:eJwd0X0s1HEcB/BDl6fqerg/emDu7JLsh7ub5iEcXdMD5WJXpHJOEcPREJXz +0J0NWWgn1SZNC7uOctFq9f1eM0r84gwryu7OPGypnbujy0jfrz8+++y1z2f7 +vLcPUyyJuWJLoVC8UeE+98lV21Zo4FEoAgmRzgTsAaUv2HD+ZkNEJhjemyK2 +YpdQzVHBDUCSzlBwb+B58mIzoQTb3k58zMBumlgqnOoGKkfFyjNsHfd0MKkB +UfHR3npsxks5QfaBhVZH0b6byBoxNfwSCaqsPXVCbAG98FfgCPA6Lu29i50t +/U61HQef7wdY+7FLyKREuwng4K+6GHoLmc1QZcboQUt5ak0BtkatGXk8DSLG +mT2d2HGtfqmbZoE8r97zQBHyi+axJNpPYPuq2EyT4nxpLSpnM3hiF+RxEltg +nN8is4CwWEucDPt5qF8odRkUm64C68Z+Y4EP8y9YZcdU6IuRjcLE7jfrYEnF +clOXIhcMaodY9vDdYRHbhK2hLxo4DlDW/yicU4bzT/LVRxwhfWbn5Q5sVsbu +UxJnyHWxaVPeRl6woY2aaDCr8gf3qRzZSV7mNUiHcyn1EYoKZNuKVHjHDbZb +tOdGsYf6j7q5M2B+2da0XZXIpMfrUikDbm6UVdVii/2qDwYyIWvs2nB1FbI+ +RzfV5Q5F/Ojz5dXIOTm6voH98JubQ9b1WmQi1/gniYDuHjbxXdhZF7YPkgRM +J1b4ZuzfA7kuQd5wNWBhj6QO/1Po4kv3gYyY4d6Ue8grO1btv/jCFFmD61kF +vh/bbFVyoGnek/R7gFxUM8MRHYLOnScIUxPyma9ybXIIbOnI/iDuQAbVPLXL +MZjgP7fsBA28sGSr8/suASz04tu1kQZeidEzT7cuhDMha9K1SeTSh3VxigQ4 +3a6vUc8iR1oiQ/4lwv/IZWCq + "]], LineBox[CompressedData[" +1:eJxTTMoPSmViYGCQAGIQ/VFe94P280f2DfOXCpRJJOwPffK1l/sXkD9h+7Fj +Zin741bVhPoA+Qd25CxIdk3Zn1HALNsL5DPwyM1lDknZX/VHYA3fb6D89Re/ +fQpT9i8Q0Tkl+Aeo/2CxGeualP1vXJLYJP4B1U9ovsOllLq/aem5OhWmx/YO +W5P/pAik7e/JDnVLBfIZDh7pTpFP2z/V8A7vMhC/WF05XS9t/4q9L+eoMz+2 +bwg6mFbqk7b/7FWW3VosQL6HpPa2jrT9EmzW3w3YHtsfuMnz8zhj+n6lMwf3 +FQL5DJtMV30XSN+vPcmjbRNIftvLMC2F9P12cmGiJuxA/ftfz59hl74/xazQ +2JwDKJ/jentGdfr+vD/ff5UD+Q2vNwQ/6ErfX36o7tAOIN8hbMVBrVnp+7v8 +egKtOIHqL7lVn9iRvn+yiLBkNZDP4FR6VPpE+v45t2Y+2A3ih9sxFV1P379s +gcKKP0B+g/dzg9PP0vevT1ueb8sFlD+7NUD9W/p+ADRbuu4= + "]]}, + Annotation[#, "Charting`Private`Tag#3"]& ], {}}, {}}, + {"WolframDynamicHighlight", <| + "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], + StyleBox[ + DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, + Slot["HighlightElements"], + Slot["LayoutOptions"], + Slot["Meta"], + Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + Line[CompressedData[" +1:eJwd1Xk8lOsXAPDJRZE1e3KlJG7SglTUGVmGbPMqst7IkjYVXSTLSIlx7YVU +QrZciQilvIqIEJIkMa8IhSxFpfid+f0xn/l8P+d5zrOfV+nQSWsPHhqN1os/ +7v8xt7KQkHgOLFPbKFFfziaTlb9PX+KaGeH0qZRN2mj9tYQ/gQORtea7VsSx +yVf7YhV4EtHJPFcTTdikVqf7AqA3Zy5dXqbDJmekLR1OoJsW6KWnNrBJW5uR +jB9or6/axh/52GS37R7lqSTsP3GtSPZZFNlnP/sX5woHaJAS8IkRRU4c38N3 ++yoHgh4sn9niEknyHNfYF5jJAcMU9Tux+RGkz57GraloCcWs7H1ZEaRiamLt +ODpVUUc5PD6CfGChMHEkC8d7+9ql2S+C/GcVKWlyiwN6V57rK5pGkCPNVl1S +ORxo6y0TT/t8kdRauVw8Np8DJjrHz7TrXSRbN562L0EPvquR5GhfJDWc3+Y9 +LeTAQ1n5wAzfC2Tal9KDI3cxvz647XsfTto9Eub1ruaAd77JprEjYeTe35FC +sSQH4g9JKDN3hJGrW6ufzDRxYHqnIsdsWSjZVWYSqdXKAWlPfpa4aAjZLOoU +fq6XA68ColkdmoFkkVWFNN8YB5z0ChV6vPxI7afiYRd+4vxJwXNvNX3Jbe+K +onUFKQjgEZqxEzpFXpQs4LstR0HbSs7yL8FHyaM2D2oTlCjwMUz2XqAOk68N +6wWeoTMKj5hJth8mq5ZRMnEqFDxmDAqn63mSux+wbYVUKWCy4u3eVnuQK/OC +Gfs3UFCZK+bbXOtOiow8ZOTpUFDTI5TQLOlKmpxvE91uTAF9gHBZb+FApuVq +B9BsKWD15Rob5liTOz9/twr1wPa/hW+5fGSQ7PktGpdPUrDBL/t9yHo6aXgt +c2HGlwLa3xE5Jsk7SI/XVy0ywtGycsxdLHFywEwuZjGGgoQvN6w/OSiCopXr +iEMs5vN0tEm/sBomA/199yRie9Y+pcpyNWiily67loFeZ6dncFoXeO0sbpDo +aaP21YlJutDGujKrnUmBCb97tjaPHjR+Wy50GU272TvdZa8HLmWJWUJZFJSx +yw5ub9SD5wXuojFo2iXGcBfsgnpJaenQbHStqtUaXoD2kuhon3wK/KlQwmaX +PlTF7969oRjXn7Vo5u1uCPn7Ttl6oGnlRldnAg0hWTrL+yY3vqHoxuEEQxA7 +dm+3dAkFUkpG4/KkIajkNy/Oo2m77EzvSxtBY7uRUXIpBSOPnDeZFhtBIunw +pBnNmlL3LKozgiVb2/if36eAbSfsEn/OGLwm/Ay9KzAurpXQJMGALxErZ6PQ +CdLN58MUGGBwpufMQAV3f34Hn9NjgFyMq5xuJQWJAmtnrR0Z0MnHxw8PsH8Y +n8FcGQNAIalBtArbO6xwGiVM4EWC0rsbjyno9fi5g7POFGRFe0bKqynQEct8 ++JVlCuoWh/Qn0ax0mf7fiaaw/6Oi8laSAvNF04qMPFM4wTy37g6a9vjF7ckW +U6jbz6DdrkGbfn/uL78XfJz772c8xf7xE6z39/bCS29Rpfh69AJ/8spXZjB4 +8qnMS66Vu7QCB83g56l/REQasD81l1j/zQxUfN/NR6NZ5Sqp62TNIcQ/r+vS +c4w73Vzx29Ec0j/HV29rpCDlgCjVE2UO6iz4N7QJ44Yt6yU55uBFCti7vsD9 +DImTkpa1gMiEk3PerRgv47367a0FKC7nNBSiWWukgwpHLOD4hh98/eiCQx5u +SV8tYNB/yw7Plxh/EtDgJmkJKgo6M4faKHiYNxkyamkJ3//yXzDrwHyOKSLv +H1mCV10In1oX+v2C9J0YKzB4bSTqg9bKbmtzuW4FyRUHc7O58aBNjuG5VlBX +QGesfoP5L9uMi5NWoLTeqrUeHeeqwrjSbwWrE3iiZLqx/Wygsd0XKwhdr1GW +/5aChdTNAoEKTOh2jhDi78H36jf+yUiFCaZzMRIf3mO+Fg3Dl0FMiOV3qFrV +h+9rbV3b5TAmdEipuNly7WhebB3BBCet6nuNXDO6j1XEMcH79ARR3I8W0J9Q +zmKCcZ9lfDBFwVF/t0/xz5gwYxR8/yVaoGNpxX8vmKAgONw/iWa9Urmu2MqE +XNXQTe4D6BOcrrguJjzwuNu69wPOT/3mH1LDTOjrFxWWHeKeL41Wyk/Al3du +Tbpoevi3peICBHgt5DlFc+OtNqSlCAEfk+6eHUMLzNdn35AkgNfhlNnQR4wX +3M84rkzAY96J0yuHsb7NWA9mridArbMt6t4I5uOXzTKgE3DmeQK/xRjOJzgj +g+lDwGXfw1Hx6IV0ma6ifwiwdFOXaELTZ9s0IwIIUF2oV2SMY/5q5fLUEAL+ +fuO4/jPay8J/YG8EAb2av7brT+D+KKoW7GcTEFIq73kc3X+0RVTnXwIMb3oe +057EeApHVy2DgJKx0ilfrnf9k/goiwDpvqo6Ei1dTL5qzSHge+e1C5umcH7X +Kg/uKSCgULD9hto0evMB77ZSAmo1VLUWZvB+W4+d3VJHQP46NX33rxR4CP+4 +e6WBgEmxrt40NP3XQv3+RgIymGKXh9FbStN+VL4goOm/U6My3zBfyNqinS0E +MOgGez3RuU6BZdEvcf5UDs+KWVxvOONHeicBlSO3W7zQ98bnjom8IcAuiC4a +h2bZnjyh0E3AVpl38kJzON5WIb+z7wioTv9jJAbtM3RguLqPAHfX1j1i3ylw +dfw4uXSAgH1pzlWG6JraAjXTDwTUDBfoh6Np/VUO5CABvpsbMn6hzed31gUN +43lUBh7++QPzL84lt40RUMX3fHz7T/R1drfgBAGH9qfsPIJ2L7NZMofmmbjL ++oqmvTG3j5giINrmt5/NPH4vHaf6lGcIKF87dHUCTRNfZJd+I6CdP3ZO9Rfm +C6OfvDpLwNjoNhs3NEvwv2H/OQKUiiPFurlmK6f++YMAvaQt3it+Y3vXhvaP +6AdPakuM0ctcIDDpJwE6Wjb9AehztyzfbZ4n4F899UtPuO1XPRSW+EVAruLr +wXk0S/XA7cfodDmWruYCBc6aBl52vwk4adfuWYlOordeLFkgQLwwwHEIXbNE +TfXPRQLU45QeKC5if5Xel7fQWn+G+DDQF27b7J5Du9r4nrmMrrm+cj6VZg1B +21d1tC5yv2+arGVLrCFZ/tkmAdoA0NPmc06hSxZOxBiga2a3n2hHN1PSn4O5 +jizp+ovHGmZjhO+koNfIGAhZoZfke+VOc+NlR5Ma0KuixXk3LsF8fdojgn9Y +wzbvh66H0TVOxIAxmj+pLjgb/cje9VYw+riWkEIvmhYX3ZiPZke/4ePjGYC3 +Vb0Ha9GZP527mWi6q67VOPrRe/5t0eiaaa84Xl5ruNa/ZrQIvULW1kwEPXXL +bmoRTTOgiyig69ix85v+GIBB7yapP9GPTte4sNA7Qz+ypdB7LPYJ3kWzipU7 +BdFOm38dHuVaXkN+Fsfzl8h5tpYX/aFIrAd9YVDK2hkdO7hOqwKtorBTtQQ9 +dqNu3A/d8OhmXwe6ZjRa1AGtGnRR/Cs6V/372R3oq0NDGkf4BiCuJaujHPdL +xjNtLgxNF6k3S0V7uzgLZaJH3pxY7Y02Vx+7N4umDQlkTON5HBa9IraFH/N7 +5729jD4/vcv7GJpupd+4Cd21OenXPbSr2tagXDzviso4NQ6aZu/ZYoW2jSb7 +5JYOQPSlHcZdeD/WGKUI+aH3dApH8/zfmhmNaHqkZch2vG8cdeMmhWUD8CpH +L5Z7H9eon4+3RzM1YwdL8L7+294lXYpmJRkNFOL9zisLPTOOpq1t7JzD+/80 +RbVjvQC6WCNCFz3nHBhzHU3Pile9852AqEk53gjBAWhVMGbtwPe3YHRBl0TX +DG42svpKQFrmJ5/vXLvKyPyN77XDroI6uhxt4TXoie9Zv4FJWgnh+I6wfd04 +AcUuMzoF6JqtFcsOfCYgIERB4yk3HljU2PMJ62PU8AYt4QGw38bh8x/B+jWc +Z1+HlklqlN81RMDq7PBAORHs37fN2eYDd727OzeiP309n96D9crOkTkajaYf +UKNf5+D3iCeovR9tvXq6OxLrGy2sXPuDKK53eY7pC6yP/c6jk4XiOD7k7I9s +IkDgDTlVi45RHmC0Yz2Wlio/qLgCxxsX6Z2ux/rWfL41gWuRkS/6tQRcSHAw +f4pu2VhyNusJARXF/jkMCcw3VP9rw2MC/gd3jaMu + "]], + Line[CompressedData[" +1:eJwV03sw1WkYB/BT7WxuNeW2WLkNm1sc5JDbwx63c+L8zo+sFbKskFvCjEvR +IYNKDmvDYAkrR4VyX8XB0swi61JkLemXWpfVImsph3388c47n/k+833feWde +9YCLbuf302g0Fq693bVypHJJlgJeaAQhV0dC6TerST5yFDhZeiV01pAwPvTl +eAO6qyaeH36XhMPp8/Za8hTY/qb/62w5CR9t8k280BwiT7KzjISk9RQNiS+w +T6rDP66QBPvpeiJBgQKvfcR/npkk+Iw0TY+haVkGkufSSFALK/lwVBH75ucF +qSkkzH2WJs5Fd/nfZZUlkxBh7m46uJfzggu64klILlvN6lVC5xYnVoaTUFxR +zPgHrTvMWogIJeFOhIFVszL2tz6SWXIjQf6a9ZlVdIZi39B9ggTtclGw0THs +l0ngnXAhIbDo8MQg2u0Wu+86k4Qey7ClKhXsP2h2kWFGwltxQVG+Gvax7qln +KJJwXWDZ0odeTh8NKZYnIdI67qm0OuZH/nQbPErCRpTjWvaeV59sroqT0Bl0 +s8ZEgwLFqeok510uiL2cY2WgeY3k45ktLuRKvx4L0aSgtc3a3mGSC84qh2Kb +tCiQnrDIX+viQviYoS9oU/DV6tLCwVwuzF6asc9D81RbPpXc4IJbubrxM7Rt +rN+4bDoXGDSBlJ0O+jKYrFzhwk5HU7e2Ls5bKZR4hHLh1qkhvU099KXah1NM +LvjJHW9vN6RApnP+c8VpAlS+s18eRtMcYxN3XxKQw8/4Q4KOHom6AEMExL4/ +1JyM5pW4iRW0EWD1QCk0yAhzX4vQqiwC/hZa0q8aU7DIvO8+60HAwPGTz01N +cP5hcjcYE/B4/YROmSkFFbJ6ZTqNHFhUCRY8Z2C+UdATHcOBtCy9WBkz7Gv5 +oC4RxIHSAWYtE21gJ6PW4M0B9xfxE7+jef1nq6KtOTD6A92s3pyCbxcNWHwp +DgRt3wwTO0XBA/MiWt2mK/A3awO7LbCvpsel+LYrnBxdV6uzQW/2sG0ELuA1 +NdCc6UjB2UCJQVEpG3ozK6x60DSvF8P6fDZIZfW82t4zo8KXdpUN2Tk7naed +KNjWKXXQvMAGDUa1RTt6vOUe5wybDU/KUht8nHF+mxU9o8yG7V9SB4zYeN9k +QkO1gAVX3qeKplwxlzyX3ZjiDPW3I1UV3CnYf6A+yWrSERI9r/nTPTAvmi4P +MHSELIvmTBk/CmSnVc63V30NfSyqkP899kWr2q5J2IE+PfxnqRgKVlqOtfY7 +mIKyiEmPjqXAfjmxPGTLBOZeldiZJ1BwpHirzWrXAJRNchyq0b3+WgVHDA3g +zafLAgUevtejpwt0JQ34t1ZTtTEFzy/0XNxnpAKTqmKRcbloyjNAOK8ulGxg +6a/dQUuFLDnNWAir66O6A+rR/aKV8RuOQm+zvzYkhHi/jncM3Z+4wgRd5oGa +Z3v/vaJT4aOH8K21KFk0hTk/L2b+R2/hm7rXOY3vMJ+rO2294yf8HziuHFo= + + "]], + Line[CompressedData[" +1:eJxTTMoPSmViYGCQAGIQ/VFe94P280f2DTYnBMokEvaHPvnay/3rkT1DXoLc +WfOU/XGrakJ9gPwDdWxOJW4p+zMKmGV7QXyTx6fkQlP2V/0RWMP3G6jffxl3 +XVHK/gUiOqcE/wD1K8q5pq5N2f/GJYlN4t8je4fooLJryqn7m5aeq1Nhemx/ +YL7pCSfhtP092aFuqUA+w+rbHmFKafunGt7hXQaS1/yrmWuYtn/F3pdz1JmB +fCc53qX+afvPXmXZrcXy2L4h8GyQbU/afgk26+8GbI/tHeau3M3Plr5f6czB +fYVAfkPHPqNI0fT92pM82jaB5FmZOZappO+3kwsTNWEH2pfXecbTOX1/ilmh +sTkH0PwtU3bubEjfn/fn+69yIL/hqZ6c3IT0/eWH6g7tAPFlr99vnZ++v8uv +J9CKE8ifcbAyfl/6/skiwpLVnCDz9wRePJu+f86tmQ92g+T3mrS53U3fv2yB +woo/IP5LdvH9b9L3r09bnm/LBVR/WpDF+k/6fgDnBbQu + "]]}, "Charting`Private`Tag#1"], + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[2]], + Line[CompressedData[" +1:eJwd03k8VPsbB/DhMrYpImvZkl1KEaF57IY5J5JKIkXhphgRbimjXNGqSIjS +JrTphkpytFhTSItSOJOSCF2l0qXfc35/zGte79fneb7f7/kuusFRPpvEWSxW +B/6Y/3QpKbUTh2kQisUH0N/9qdEd8TFOx2hgydmtj3qwmpo7a+eDOLTdkKFI +Nnc1pb1G16aCyX8976sNXU31p7WEamTSYFBa9dtAZTW1ojrqnmIWDT4V0voz +fFdRoVvqczqP4/iaIyWzpnypC71qpvrZNLhcP/aO3ehLvQ1UronMxdwwgDy3 +3Yf6SmzWKWbMvjT8eJkPxbGn9tBoFk/jlaGRD2Wr8ae7bx7m91eHhHUtp3Je +VLctOYm26FKRcllO+XptfCdRgPVn+jnBmt7Uo5zQ8t1oh9lt9R5FXlSzww3p +k4WY275Nv9TFpyT8yAIKXWk1tOdiGZ9qEx4ftzpDw/qLyx8uMuBTTd/kOFlo +VsMNx8ZbntT68mNnOWdpiHTPSQk096QaSzfKH0Kz1jx8PZbnQdXPVFFJOo+m +OXo9W92p+x8T9EKK0eqTvRs9nSlxFa+NZxgHxoUnyDpT0inDSb/RJSVT5VtL +nah7Be0GASWYPwmbcCCcqFofE5OVpeiUs26WPo5Uxkl9y82XaKi/W5p7zsmB +qqnuWuB+GXONGf4yz7jUnQwu17QMXfa1UPGwNVW8QrBqE2Nbt6Hp+tZUtsrZ +yNOM81ft3Vq9mFKI+Iercp0GM0X9oZJ+K8qguOX3LzSr/rbYKW9Lqqnd1TX7 +Bg3jgUWD8ekW1DHK/14LmmXU28k2taDEFraxGytoKKpIzd5w35QKH45zibyJ +eduBpGGeATWSqjGejl7QFn+1fUSfco59HSti8s5qr7sdcyn1QxvU7W7R0DMW +FKN8W496JinJhtuYS8tY8FJ0KNDMbJC/g67ljL/sUKYeHdXtKrhLg0Sv7Sax +4YkaNfnXHytraNg3WXN+e/K1GjMy2HEUzRI20l7ZbVzfD9pzF1I0mDZVJb+T +7uNu9d6pfwXN0pG65PbpK/ehrzurpJap32/lt1MStgX2VBTeZ77PpEY9WRla +I+V1M+qZ/erd5yquD31R91VbGc/88rWhUB8mBNunT29A2zTcP881AIOYrl8H +GBNhEVEJhrA7/uKLfY1oy02mq/qM4dRgRs3iJhq+fTuR6pVmCmZCOJjUjHmh +86G2AnMIp2TWbHhEQ9brTeKU9wJIOxr1PfIJ5uvCel0eLwJtud6Gy4z3r1T3 +m2EJW0x/Svag/8p9viuaZwl98RZLQlsxX+h5qavLEgw0rceC22h4Il5XcmHQ +Cn6YxE/xn2Ke59GYNWQN4Q93Sxq/YN7XS4UNdXbg/NxVfht6wiIuM0DOHrJv +BhWdZ3LB5Q9FdvbwsNTBXeclM/+fZHeZPegaej2pR9/TGtU9RywFnaPi6aqd +mHOjzhnkLIUkQ/Py4lc0SJ5h3+VJAnQGpnLYrzGvYx/l+gN4fD+k9O4tvl/x +4/J1qxzhMNv/zuxuzGd0+eZEOsJTZYOQVWjhEj9l71RHCLCs+aeJ8bmcpVsr +HCEyenh5WQ/6ucbpIEUncOtelrGLpuGWR6riggYn+KYlzb+HHjv8ttK11wm6 +e+Snqb3H+tBIxc7ZLjDSFdJsh97vGizYb+wC4VMXAw6gWbsyzSpcXeBD5rW/ +htDfZGI1GsNcQMJfwH//AfvtTmj13nWBuxLD0Rr9NBQ7czZcb3UB42dt6f98 +xP6fcwyS/FwhtvEomxzC+hVHgl/vcIOsmLD0DHRC97u/tY+4wbIQM6VmJl+c +F0cWuoHRVL22+2fs1zKcSda5wbqXaw0H0TZmKfJjX93gzaL/bByHMZ+zet/Y +NHfYfWNW6Bb05Uf5NtIa7uByOjTCahTHm9kf+DHXHZTj7No0v6K3maY15POg +WN/YcSPac2t04rcrPBhVePEmD80K6r5scYcHhd4KWf1osysdtice86D5kmBA +9RtzHonh5q944O7g7BmKdomel5s5yIPd9AVxxXEcXzeNQyt5wAdCwYr9A222 +7JZligdU6r3PHf6F/UD09np7Qjv78Hej/9ChlSNiAZ4wNLB4Zcj/ncXjhHmC +blmaQifjJuvvbxI94aC92b57k+jk5SZRFz1hKkZwOuM3DXJnvr+88d0TEm1m +P32CFvaPeqiK8yF7Vt18GZYIhHsDd1TJ8aGFVhnchWY90ltRo8UHTc+QCT8x +Ecgelt8W68gHseYZF66jZUpaE14t4wNnn5iX7R9YH9X6My+dD9XRteuF6K5O +//L8TD44kStkr6GFMkMWNnl8iFe6UKcnge7jpu8u5YPoNM9+miT2/71ll1Qz +H27eOmLcy0bbPb+rIEnAqgNUt7qUCHa4VoVPyhEwx/UEJw4t4dQheKXCeFFh +E1oYxMrI0iHgYPsLlRvS2F8g2fHQloCIX/Dhb1kR3F5uEmQeQcCUa4odhWa1 ++yx9KCAg78ynbT/Qwu2BX5ziCHjqd5PeLIe5UTlXIpkAxwZvyouDTjyrceI4 +AWXrx6xL0apZL1vWFRCQsFvT/D6TB43L/nmagOL0flPLaSLo1sw2FxUT4Nd/ +cc1D9N7kOeG8cgJ0zu/doT4d610PGP9xB9dvxn02D61m5B5zqBrr13oPHGBy +84oTOQ8ICBdPbO9BFzr7GJc2EXiulVbv5HG9zcXnkrsIUHgsvCepIAIFmu1Q ++5YAG5u951eiWXXU3rciAgQjXkqNaKHGqtjBAQJ6AgdGL89Ar53L1fpOgMxL +6ssD9F3vzKB1PwhQUa4M0lbE3Mphm/Mk9g/ExF9Ar044l6woQcInwwHJR0zu +s2jPJ0kSzLeJOU2hTyoMzg+UJuFUxNWqOCUR5G8pk30/jQT/7D3vrikx57vi +YqgCCeNfPmoMoIX0JPVcEftLKtLXzsTc8GrGDlUSfvc+je9G26i6tbrPxvFU +vcIclLGez+X1aJNgG1Nx6i/GegrvG3VJ8Ks5TZSgxRLOKy3XI2GmnkWyvooI +Ei+U5SsbklBKL0tchxa27qy4bkTC9P/WCg6hx1Kk6r8ZkzA7YOjGTFURBPM4 +bn7zSFDz/rjGGc1KbdXYYk4C3bWxLw0dRTStH5pPgrdURWMFk0eoenUuIGEo +eBZrhHE6y/5fCxLSapKtjdTQhZywnwtJyKuq1uahjQSalcmLSKjdvqwoj8lH +Vx5stSQhoL38bQfjks8Zp6xI0InIH5uhjutt+Fdx82IS+iRSZLzRrOipAm1r +Er7KER2H0OKlg7E1aMOIFVYt6FNBvgM8GxIWPrXly2ow8xdVVqPn5Q4q+KM/ +L+JbzF9CQpWkbHwqkz+TvReMfr7A1KgefeLok4bjaKclr86Kz8L5LbYduI5m +d9TeckCzflTwbqGHFVTGN6KrPbL2XUML6BkJteiJJ/MWJ6N9C+MnJpj+iXXz +PNHJfZvOes8WgehGSXIHrudNh5tBPFpoXbI5C1241dy+gnFzkoY6WmXvUt8v +6Ne/BK8O4vcZnZkMs9DE/P3IHRr343NV8EQs+ojAZrES+vqzlswraNYCMUtf +3L+4LVZKjWhLz8STX3B/baXzKWMtJt9QLsD9l7N4bFiEznodYrsYzyv1uY9Y +H5PHxZVN4Pnyo2xV52ijZ3pmFuP5nz/lUVKFtt2uG8YxJSHH/ovfGyZXjF66 +0ATP70VnpIYO+o1d7368X/WDe4x2oa+6SE1W6pOQXmxXWYdeyWF17cf7Gbk0 +vl5Rl5lvvpY63l/1CRP2RXQn+/CuP/C+K+zkqo2iZ6e1CJark5Bvc+iK/hwR +3F+3vtwD34d0Z5/HPjQrIHxOrBIJLdEtQXVo4ecgpz58X4cvVP3W0hNBwvhW +C0l8f+qw90wSmpUSVVWJ7zNvd/4zs7ki4FaVFHuxSDAp0v0Zj2Y1tW8u/Y+A +YZCRr2T84NW8mJ8ErLtTEz2C7r1yUiJsnIAjxE3CVF8Ec6N2ZWqOEWA3rdZb +gGZNtp71HiFgoV74rJ1oYZtLVvkwAf8D6M/5kQ== + "]], + Line[CompressedData[" +1:eJwV0Hk01GsYB/C5Yax1hW64QuES0wlTyDIPZjLG/FrIFBGqMWO7KN1D1ml0 +iqgmSyfpoo0h2xGlLG+U6ibVaTnXlvRKFO3lFiP39cd73vM532d5z7t8V5xf ++AIajbabnPnbveBy8hcLDLSgxdFtYxTEehZvC7QizmvJkyAKhvcMcfLn/Wt6 +F9VCgd/Z5fY9837SZKF6lQIHmlzLYyUGSYOlxKuWgp9tjR1W1iTfh5d+LKbg +6LoHNt9tiN+Vl35OIHnEYgN7BvHw3cbzsRTEn/KnxxBLTha7siMpiDqS2DpE +fMK0a0dkCAVGTWOFd1aR3DjohoxLQegSy+vXV2NQJEx1DutQYBzGefeIWPLm +o8Gf2hTIjh/u17Al8zdzVabUKdj3fmFTOrFk9KLmUwUfXKsNo0R2JO8K9O54 +yYdJ5GKbYY8hnTPeMdfOh27LNU/XMkl9QP0CoZwPLV9XrSxdi6E9srA3aQsf +3hqL5U8dSH/hMtprKz4czLXZp+tI6lXN3MpN+FDSza5hE+vJurpT9fmw5VnS +vw+JaYORx+KV+PA4z9axzglD2CcsV3vpAyJFTrTaOgwTVbf5vY994Pj3GmGH +M5lnEYoacnxgzeOvprUs0j8X84Y+wIMHcG1yklhSLRYEPORBRE1asw0QP24u +PHmTB39n0TdXEtMSZy/0XeIBHfQzLriT/OudpOQUHjzMSigK8cSQMZEpYJrx +oPeSy/PTxDT8o8N6KQ8CB7qbsrwwjAuOGJm7e8OtrHOuncTuNWX1Xkxv0Mrt +fKEglrCY8QZ/eMMx2c92PhdDeYAsBPS8YYVDhfN14jb7lNe/zHChtVTaEOxN ++t2Yvk3PuKC4Ju228yH+cnaPQsSF1PfS2YENxGm1MwfTvKCuMNZEfwsGhw4l +JmPRekjelrnTVkDeF3M7bVUKB9hPwoYiiW9wBZpxURzQ2sQKOj9vq8tXzwZy +4F5rL4OxFYP6nEpLiB0Hbq2N81YQu3/IGC76wgb/bK1x3wAMRpnax8xz2bBQ +L2j1XWLa/soavwg2fNQcyhvdjsH/Mri8bPOEskf2s6HBJL9bUN/u5QknnZyF +90Ix3KOFhnYZe0AXD586vpv8h2tUjEk9wBUlj68980YLKkYzAQzTWRpqQgxT +/tqmBdsBBvP0BzcQU9+NFzVZAeTa7aBnE0viIwLjfrLAz6A3QRpO9p3IXS33 +YYFl2WmeixiDvrrUWaTqBkPjPRv/IqYxXxX1D7pCo6xZNhiJ4WWKTu4uDReY +OnxNOSiazIu8cjN6fB0s3Pmi0TEBw7eaEo3po0wwmmXb7t2HQdY3FcFKsIdX +L854OO3H0CtILjb0ZYARU7a+glg3OFw3LdsGRmZS5PoSDAm3FGkZYyZkjrnJ +5QNkf2NUvMjMEPpM1GITT5B9/dsk7/XMkGYDj/G5jLgqf1vDKhdUURffsauO +/H818616iRcKchyb0kAYNs85TJ0q24z2W7OVKntIfQHT49O0AI26zabPDmBo ++DEt/VEQhKLEh298eI1BrhutvHRxGIoYoBdnT2DIybxU9V1lJxK8+nZUcxrD +qyRGzDlHIQqpShVQxKyNqc+5XkIUEa+07ChxbXKP/KO/ECUrtKsXzWAINt1E +UXuFqEyPcW+xAsP1uaftNjVCNMnZRdf/iWHrb4k6OWbhSHrxQbr5ghFo7U9K +/0dHhHKjBV7hxO5aggt9y0Wo0G5wYTkxI5/z+ztbEZK3vTljqTQCyhncmWWb +RKjnmXKLtfIIHORyUytyREif7vKfLX0EJje9WB+oIkYr7ne07yF2ksqCS/TE +yCbP+1ADsf8ztRuvzcSIZbx1yRrVEQg+BTEHPMVI6LCH6ag2AorKML+hDDGK +Vfw3nUh833X0jttxMUrsTO9sJuZYLMkqKxGjIxtzfZ3VSW4ZPRbXJkb5eroG +KcStRZqHBu+L0Zn+ouEWYidNKpYaFKPyMlO5grh64k0pmhCjOlFFnJvGCFjd +PmfoMCNG/wPgFOpp + "]], + + Line[{{0.548584807779583, -0.0016811695613057898`}, { + 0.5485891113408887, -0.0016789749014940094`}}]}, + "Charting`Private`Tag#2"], + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[2]], + Line[CompressedData[" +1:eJwd0X0s1HEcB/BDl6fqerg/emDu7JLsh7ub5iEcXdMD5WJXpHJOEcPREJXz +0J0NWWgn1SZNC7uOctFq9f1eM0r84gwryu7OPGypnbujy0jfrz8+++y1z2f7 +vLcPUyyJuWJLoVC8UeE+98lV21Zo4FEoAgmRzgTsAaUv2HD+ZkNEJhjemyK2 +YpdQzVHBDUCSzlBwb+B58mIzoQTb3k58zMBumlgqnOoGKkfFyjNsHfd0MKkB +UfHR3npsxks5QfaBhVZH0b6byBoxNfwSCaqsPXVCbAG98FfgCPA6Lu29i50t +/U61HQef7wdY+7FLyKREuwng4K+6GHoLmc1QZcboQUt5ak0BtkatGXk8DSLG +mT2d2HGtfqmbZoE8r97zQBHyi+axJNpPYPuq2EyT4nxpLSpnM3hiF+RxEltg +nN8is4CwWEucDPt5qF8odRkUm64C68Z+Y4EP8y9YZcdU6IuRjcLE7jfrYEnF +clOXIhcMaodY9vDdYRHbhK2hLxo4DlDW/yicU4bzT/LVRxwhfWbn5Q5sVsbu +UxJnyHWxaVPeRl6woY2aaDCr8gf3qRzZSV7mNUiHcyn1EYoKZNuKVHjHDbZb +tOdGsYf6j7q5M2B+2da0XZXIpMfrUikDbm6UVdVii/2qDwYyIWvs2nB1FbI+ +RzfV5Q5F/Ojz5dXIOTm6voH98JubQ9b1WmQi1/gniYDuHjbxXdhZF7YPkgRM +J1b4ZuzfA7kuQd5wNWBhj6QO/1Po4kv3gYyY4d6Ue8grO1btv/jCFFmD61kF +vh/bbFVyoGnek/R7gFxUM8MRHYLOnScIUxPyma9ybXIIbOnI/iDuQAbVPLXL +MZjgP7fsBA28sGSr8/suASz04tu1kQZeidEzT7cuhDMha9K1SeTSh3VxigQ4 +3a6vUc8iR1oiQ/4lwv/IZWCq + "]], + Line[CompressedData[" +1:eJxTTMoPSmViYGCQAGIQ/VFe94P280f2DfOXCpRJJOwPffK1l/sXkD9h+7Fj +Zin741bVhPoA+Qd25CxIdk3Zn1HALNsL5DPwyM1lDknZX/VHYA3fb6D89Re/ +fQpT9i8Q0Tkl+Aeo/2CxGeualP1vXJLYJP4B1U9ovsOllLq/aem5OhWmx/YO +W5P/pAik7e/JDnVLBfIZDh7pTpFP2z/V8A7vMhC/WF05XS9t/4q9L+eoMz+2 +bwg6mFbqk7b/7FWW3VosQL6HpPa2jrT9EmzW3w3YHtsfuMnz8zhj+n6lMwf3 +FQL5DJtMV30XSN+vPcmjbRNIftvLMC2F9P12cmGiJuxA/ftfz59hl74/xazQ +2JwDKJ/jentGdfr+vD/ff5UD+Q2vNwQ/6ErfX36o7tAOIN8hbMVBrVnp+7v8 +egKtOIHqL7lVn9iRvn+yiLBkNZDP4FR6VPpE+v45t2Y+2A3ih9sxFV1P379s +gcKKP0B+g/dzg9PP0vevT1ueb8sFlD+7NUD9W/p+ADRbuu4= + "]]}, "Charting`Private`Tag#3"], {}}}, {}}, <| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0.505, 0.595}, {-0.0175, 0.0025}}, + "Frame" -> {{True, True}, {True, True}}, + "AxesOrigin" -> {0.5050000000000011, 0}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {FontFamily -> "Bitstream Charter", FontSize -> 12, + GrayLevel[0]}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { + Directive[ + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[2]], + Directive[ + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[2]], + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, { + Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> + False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + Plot, "GroupHighlight" -> False|>|>]]& )[<| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0.505, 0.595}, {-0.0175, 0.0025}}, + "Frame" -> {{True, True}, {True, True}}, + "AxesOrigin" -> {0.5050000000000011, 0}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> { + FontFamily -> "Bitstream Charter", FontSize -> 12, + GrayLevel[0]}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { + Directive[ + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[2]], + Directive[ + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[2]], + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, { + Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + Plot, "GroupHighlight" -> False|>|>], + ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { + 4.503599627370496*^15, -4.503599627370496*^15}}], + Selectable->False]}, + Annotation[{{{{}, {}, + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + Line[CompressedData[" +1:eJwd1Xk8lOsXAPDJRZE1e3KlJG7SglTUGVmGbPMqst7IkjYVXSTLSIlx7YVU +QrZciQilvIqIEJIkMa8IhSxFpfid+f0xn/l8P+d5zrOfV+nQSWsPHhqN1os/ +7v8xt7KQkHgOLFPbKFFfziaTlb9PX+KaGeH0qZRN2mj9tYQ/gQORtea7VsSx +yVf7YhV4EtHJPFcTTdikVqf7AqA3Zy5dXqbDJmekLR1OoJsW6KWnNrBJW5uR +jB9or6/axh/52GS37R7lqSTsP3GtSPZZFNlnP/sX5woHaJAS8IkRRU4c38N3 ++yoHgh4sn9niEknyHNfYF5jJAcMU9Tux+RGkz57GraloCcWs7H1ZEaRiamLt +ODpVUUc5PD6CfGChMHEkC8d7+9ql2S+C/GcVKWlyiwN6V57rK5pGkCPNVl1S +ORxo6y0TT/t8kdRauVw8Np8DJjrHz7TrXSRbN562L0EPvquR5GhfJDWc3+Y9 +LeTAQ1n5wAzfC2Tal9KDI3cxvz647XsfTto9Eub1ruaAd77JprEjYeTe35FC +sSQH4g9JKDN3hJGrW6ufzDRxYHqnIsdsWSjZVWYSqdXKAWlPfpa4aAjZLOoU +fq6XA68ColkdmoFkkVWFNN8YB5z0ChV6vPxI7afiYRd+4vxJwXNvNX3Jbe+K +onUFKQjgEZqxEzpFXpQs4LstR0HbSs7yL8FHyaM2D2oTlCjwMUz2XqAOk68N +6wWeoTMKj5hJth8mq5ZRMnEqFDxmDAqn63mSux+wbYVUKWCy4u3eVnuQK/OC +Gfs3UFCZK+bbXOtOiow8ZOTpUFDTI5TQLOlKmpxvE91uTAF9gHBZb+FApuVq +B9BsKWD15Rob5liTOz9/twr1wPa/hW+5fGSQ7PktGpdPUrDBL/t9yHo6aXgt +c2HGlwLa3xE5Jsk7SI/XVy0ywtGycsxdLHFywEwuZjGGgoQvN6w/OSiCopXr +iEMs5vN0tEm/sBomA/199yRie9Y+pcpyNWiily67loFeZ6dncFoXeO0sbpDo +aaP21YlJutDGujKrnUmBCb97tjaPHjR+Wy50GU272TvdZa8HLmWJWUJZFJSx +yw5ub9SD5wXuojFo2iXGcBfsgnpJaenQbHStqtUaXoD2kuhon3wK/KlQwmaX +PlTF7969oRjXn7Vo5u1uCPn7Ttl6oGnlRldnAg0hWTrL+yY3vqHoxuEEQxA7 +dm+3dAkFUkpG4/KkIajkNy/Oo2m77EzvSxtBY7uRUXIpBSOPnDeZFhtBIunw +pBnNmlL3LKozgiVb2/if36eAbSfsEn/OGLwm/Ay9KzAurpXQJMGALxErZ6PQ +CdLN58MUGGBwpufMQAV3f34Hn9NjgFyMq5xuJQWJAmtnrR0Z0MnHxw8PsH8Y +n8FcGQNAIalBtArbO6xwGiVM4EWC0rsbjyno9fi5g7POFGRFe0bKqynQEct8 ++JVlCuoWh/Qn0ax0mf7fiaaw/6Oi8laSAvNF04qMPFM4wTy37g6a9vjF7ckW +U6jbz6DdrkGbfn/uL78XfJz772c8xf7xE6z39/bCS29Rpfh69AJ/8spXZjB4 +8qnMS66Vu7QCB83g56l/REQasD81l1j/zQxUfN/NR6NZ5Sqp62TNIcQ/r+vS +c4w73Vzx29Ec0j/HV29rpCDlgCjVE2UO6iz4N7QJ44Yt6yU55uBFCti7vsD9 +DImTkpa1gMiEk3PerRgv47367a0FKC7nNBSiWWukgwpHLOD4hh98/eiCQx5u +SV8tYNB/yw7Plxh/EtDgJmkJKgo6M4faKHiYNxkyamkJ3//yXzDrwHyOKSLv +H1mCV10In1oX+v2C9J0YKzB4bSTqg9bKbmtzuW4FyRUHc7O58aBNjuG5VlBX +QGesfoP5L9uMi5NWoLTeqrUeHeeqwrjSbwWrE3iiZLqx/Wygsd0XKwhdr1GW +/5aChdTNAoEKTOh2jhDi78H36jf+yUiFCaZzMRIf3mO+Fg3Dl0FMiOV3qFrV +h+9rbV3b5TAmdEipuNly7WhebB3BBCet6nuNXDO6j1XEMcH79ARR3I8W0J9Q +zmKCcZ9lfDBFwVF/t0/xz5gwYxR8/yVaoGNpxX8vmKAgONw/iWa9Urmu2MqE +XNXQTe4D6BOcrrguJjzwuNu69wPOT/3mH1LDTOjrFxWWHeKeL41Wyk/Al3du +Tbpoevi3peICBHgt5DlFc+OtNqSlCAEfk+6eHUMLzNdn35AkgNfhlNnQR4wX +3M84rkzAY96J0yuHsb7NWA9mridArbMt6t4I5uOXzTKgE3DmeQK/xRjOJzgj +g+lDwGXfw1Hx6IV0ma6ifwiwdFOXaELTZ9s0IwIIUF2oV2SMY/5q5fLUEAL+ +fuO4/jPay8J/YG8EAb2av7brT+D+KKoW7GcTEFIq73kc3X+0RVTnXwIMb3oe +057EeApHVy2DgJKx0ilfrnf9k/goiwDpvqo6Ei1dTL5qzSHge+e1C5umcH7X +Kg/uKSCgULD9hto0evMB77ZSAmo1VLUWZvB+W4+d3VJHQP46NX33rxR4CP+4 +e6WBgEmxrt40NP3XQv3+RgIymGKXh9FbStN+VL4goOm/U6My3zBfyNqinS0E +MOgGez3RuU6BZdEvcf5UDs+KWVxvOONHeicBlSO3W7zQ98bnjom8IcAuiC4a +h2bZnjyh0E3AVpl38kJzON5WIb+z7wioTv9jJAbtM3RguLqPAHfX1j1i3ylw +dfw4uXSAgH1pzlWG6JraAjXTDwTUDBfoh6Np/VUO5CABvpsbMn6hzed31gUN +43lUBh7++QPzL84lt40RUMX3fHz7T/R1drfgBAGH9qfsPIJ2L7NZMofmmbjL ++oqmvTG3j5giINrmt5/NPH4vHaf6lGcIKF87dHUCTRNfZJd+I6CdP3ZO9Rfm +C6OfvDpLwNjoNhs3NEvwv2H/OQKUiiPFurlmK6f++YMAvaQt3it+Y3vXhvaP +6AdPakuM0ctcIDDpJwE6Wjb9AehztyzfbZ4n4F899UtPuO1XPRSW+EVAruLr +wXk0S/XA7cfodDmWruYCBc6aBl52vwk4adfuWYlOordeLFkgQLwwwHEIXbNE +TfXPRQLU45QeKC5if5Xel7fQWn+G+DDQF27b7J5Du9r4nrmMrrm+cj6VZg1B +21d1tC5yv2+arGVLrCFZ/tkmAdoA0NPmc06hSxZOxBiga2a3n2hHN1PSn4O5 +jizp+ovHGmZjhO+koNfIGAhZoZfke+VOc+NlR5Ma0KuixXk3LsF8fdojgn9Y +wzbvh66H0TVOxIAxmj+pLjgb/cje9VYw+riWkEIvmhYX3ZiPZke/4ePjGYC3 +Vb0Ha9GZP527mWi6q67VOPrRe/5t0eiaaa84Xl5ruNa/ZrQIvULW1kwEPXXL +bmoRTTOgiyig69ix85v+GIBB7yapP9GPTte4sNA7Qz+ypdB7LPYJ3kWzipU7 +BdFOm38dHuVaXkN+Fsfzl8h5tpYX/aFIrAd9YVDK2hkdO7hOqwKtorBTtQQ9 +dqNu3A/d8OhmXwe6ZjRa1AGtGnRR/Cs6V/372R3oq0NDGkf4BiCuJaujHPdL +xjNtLgxNF6k3S0V7uzgLZaJH3pxY7Y02Vx+7N4umDQlkTON5HBa9IraFH/N7 +5729jD4/vcv7GJpupd+4Cd21OenXPbSr2tagXDzviso4NQ6aZu/ZYoW2jSb7 +5JYOQPSlHcZdeD/WGKUI+aH3dApH8/zfmhmNaHqkZch2vG8cdeMmhWUD8CpH +L5Z7H9eon4+3RzM1YwdL8L7+294lXYpmJRkNFOL9zisLPTOOpq1t7JzD+/80 +RbVjvQC6WCNCFz3nHBhzHU3Pile9852AqEk53gjBAWhVMGbtwPe3YHRBl0TX +DG42svpKQFrmJ5/vXLvKyPyN77XDroI6uhxt4TXoie9Zv4FJWgnh+I6wfd04 +AcUuMzoF6JqtFcsOfCYgIERB4yk3HljU2PMJ62PU8AYt4QGw38bh8x/B+jWc +Z1+HlklqlN81RMDq7PBAORHs37fN2eYDd727OzeiP309n96D9crOkTkajaYf +UKNf5+D3iCeovR9tvXq6OxLrGy2sXPuDKK53eY7pC6yP/c6jk4XiOD7k7I9s +IkDgDTlVi45RHmC0Yz2Wlio/qLgCxxsX6Z2ux/rWfL41gWuRkS/6tQRcSHAw +f4pu2VhyNusJARXF/jkMCcw3VP9rw2MC/gd3jaMu + "]], + Line[CompressedData[" +1:eJwV03sw1WkYB/BT7WxuNeW2WLkNm1sc5JDbwx63c+L8zo+sFbKskFvCjEvR +IYNKDmvDYAkrR4VyX8XB0swi61JkLemXWpfVImsph3388c47n/k+833feWde +9YCLbuf302g0Fq693bVypHJJlgJeaAQhV0dC6TerST5yFDhZeiV01pAwPvTl +eAO6qyaeH36XhMPp8/Za8hTY/qb/62w5CR9t8k280BwiT7KzjISk9RQNiS+w +T6rDP66QBPvpeiJBgQKvfcR/npkk+Iw0TY+haVkGkufSSFALK/lwVBH75ucF +qSkkzH2WJs5Fd/nfZZUlkxBh7m46uJfzggu64klILlvN6lVC5xYnVoaTUFxR +zPgHrTvMWogIJeFOhIFVszL2tz6SWXIjQf6a9ZlVdIZi39B9ggTtclGw0THs +l0ngnXAhIbDo8MQg2u0Wu+86k4Qey7ClKhXsP2h2kWFGwltxQVG+Gvax7qln +KJJwXWDZ0odeTh8NKZYnIdI67qm0OuZH/nQbPErCRpTjWvaeV59sroqT0Bl0 +s8ZEgwLFqeok510uiL2cY2WgeY3k45ktLuRKvx4L0aSgtc3a3mGSC84qh2Kb +tCiQnrDIX+viQviYoS9oU/DV6tLCwVwuzF6asc9D81RbPpXc4IJbubrxM7Rt +rN+4bDoXGDSBlJ0O+jKYrFzhwk5HU7e2Ls5bKZR4hHLh1qkhvU099KXah1NM +LvjJHW9vN6RApnP+c8VpAlS+s18eRtMcYxN3XxKQw8/4Q4KOHom6AEMExL4/ +1JyM5pW4iRW0EWD1QCk0yAhzX4vQqiwC/hZa0q8aU7DIvO8+60HAwPGTz01N +cP5hcjcYE/B4/YROmSkFFbJ6ZTqNHFhUCRY8Z2C+UdATHcOBtCy9WBkz7Gv5 +oC4RxIHSAWYtE21gJ6PW4M0B9xfxE7+jef1nq6KtOTD6A92s3pyCbxcNWHwp +DgRt3wwTO0XBA/MiWt2mK/A3awO7LbCvpsel+LYrnBxdV6uzQW/2sG0ELuA1 +NdCc6UjB2UCJQVEpG3ozK6x60DSvF8P6fDZIZfW82t4zo8KXdpUN2Tk7naed +KNjWKXXQvMAGDUa1RTt6vOUe5wybDU/KUht8nHF+mxU9o8yG7V9SB4zYeN9k +QkO1gAVX3qeKplwxlzyX3ZjiDPW3I1UV3CnYf6A+yWrSERI9r/nTPTAvmi4P +MHSELIvmTBk/CmSnVc63V30NfSyqkP899kWr2q5J2IE+PfxnqRgKVlqOtfY7 +mIKyiEmPjqXAfjmxPGTLBOZeldiZJ1BwpHirzWrXAJRNchyq0b3+WgVHDA3g +zafLAgUevtejpwt0JQ34t1ZTtTEFzy/0XNxnpAKTqmKRcbloyjNAOK8ulGxg +6a/dQUuFLDnNWAir66O6A+rR/aKV8RuOQm+zvzYkhHi/jncM3Z+4wgRd5oGa +Z3v/vaJT4aOH8K21KFk0hTk/L2b+R2/hm7rXOY3vMJ+rO2294yf8HziuHFo= + + "]], + Line[CompressedData[" +1:eJxTTMoPSmViYGCQAGIQ/VFe94P280f2DTYnBMokEvaHPvnay/3rkT1DXoLc +WfOU/XGrakJ9gPwDdWxOJW4p+zMKmGV7QXyTx6fkQlP2V/0RWMP3G6jffxl3 +XVHK/gUiOqcE/wD1K8q5pq5N2f/GJYlN4t8je4fooLJryqn7m5aeq1Nhemx/ +YL7pCSfhtP092aFuqUA+w+rbHmFKafunGt7hXQaS1/yrmWuYtn/F3pdz1JmB +fCc53qX+afvPXmXZrcXy2L4h8GyQbU/afgk26+8GbI/tHeau3M3Plr5f6czB +fYVAfkPHPqNI0fT92pM82jaB5FmZOZappO+3kwsTNWEH2pfXecbTOX1/ilmh +sTkH0PwtU3bubEjfn/fn+69yIL/hqZ6c3IT0/eWH6g7tAPFlr99vnZ++v8uv +J9CKE8ifcbAyfl/6/skiwpLVnCDz9wRePJu+f86tmQ92g+T3mrS53U3fv2yB +woo/IP5LdvH9b9L3r09bnm/LBVR/WpDF+k/6fgDnBbQu + "]]}, "Charting`Private`Tag#1"], + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[2]], + Line[CompressedData[" +1:eJwd03k8VPsbB/DhMrYpImvZkl1KEaF57IY5J5JKIkXhphgRbimjXNGqSIjS +JrTphkpytFhTSItSOJOSCF2l0qXfc35/zGte79fneb7f7/kuusFRPpvEWSxW +B/6Y/3QpKbUTh2kQisUH0N/9qdEd8TFOx2hgydmtj3qwmpo7a+eDOLTdkKFI +Nnc1pb1G16aCyX8976sNXU31p7WEamTSYFBa9dtAZTW1ojrqnmIWDT4V0voz +fFdRoVvqczqP4/iaIyWzpnypC71qpvrZNLhcP/aO3ehLvQ1UronMxdwwgDy3 +3Yf6SmzWKWbMvjT8eJkPxbGn9tBoFk/jlaGRD2Wr8ae7bx7m91eHhHUtp3Je +VLctOYm26FKRcllO+XptfCdRgPVn+jnBmt7Uo5zQ8t1oh9lt9R5FXlSzww3p +k4WY275Nv9TFpyT8yAIKXWk1tOdiGZ9qEx4ftzpDw/qLyx8uMuBTTd/kOFlo +VsMNx8ZbntT68mNnOWdpiHTPSQk096QaSzfKH0Kz1jx8PZbnQdXPVFFJOo+m +OXo9W92p+x8T9EKK0eqTvRs9nSlxFa+NZxgHxoUnyDpT0inDSb/RJSVT5VtL +nah7Be0GASWYPwmbcCCcqFofE5OVpeiUs26WPo5Uxkl9y82XaKi/W5p7zsmB +qqnuWuB+GXONGf4yz7jUnQwu17QMXfa1UPGwNVW8QrBqE2Nbt6Hp+tZUtsrZ +yNOM81ft3Vq9mFKI+Iercp0GM0X9oZJ+K8qguOX3LzSr/rbYKW9Lqqnd1TX7 +Bg3jgUWD8ekW1DHK/14LmmXU28k2taDEFraxGytoKKpIzd5w35QKH45zibyJ +eduBpGGeATWSqjGejl7QFn+1fUSfco59HSti8s5qr7sdcyn1QxvU7W7R0DMW +FKN8W496JinJhtuYS8tY8FJ0KNDMbJC/g67ljL/sUKYeHdXtKrhLg0Sv7Sax +4YkaNfnXHytraNg3WXN+e/K1GjMy2HEUzRI20l7ZbVzfD9pzF1I0mDZVJb+T +7uNu9d6pfwXN0pG65PbpK/ehrzurpJap32/lt1MStgX2VBTeZ77PpEY9WRla +I+V1M+qZ/erd5yquD31R91VbGc/88rWhUB8mBNunT29A2zTcP881AIOYrl8H +GBNhEVEJhrA7/uKLfY1oy02mq/qM4dRgRs3iJhq+fTuR6pVmCmZCOJjUjHmh +86G2AnMIp2TWbHhEQ9brTeKU9wJIOxr1PfIJ5uvCel0eLwJtud6Gy4z3r1T3 +m2EJW0x/Svag/8p9viuaZwl98RZLQlsxX+h5qavLEgw0rceC22h4Il5XcmHQ +Cn6YxE/xn2Ke59GYNWQN4Q93Sxq/YN7XS4UNdXbg/NxVfht6wiIuM0DOHrJv +BhWdZ3LB5Q9FdvbwsNTBXeclM/+fZHeZPegaej2pR9/TGtU9RywFnaPi6aqd +mHOjzhnkLIUkQ/Py4lc0SJ5h3+VJAnQGpnLYrzGvYx/l+gN4fD+k9O4tvl/x +4/J1qxzhMNv/zuxuzGd0+eZEOsJTZYOQVWjhEj9l71RHCLCs+aeJ8bmcpVsr +HCEyenh5WQ/6ucbpIEUncOtelrGLpuGWR6riggYn+KYlzb+HHjv8ttK11wm6 +e+Snqb3H+tBIxc7ZLjDSFdJsh97vGizYb+wC4VMXAw6gWbsyzSpcXeBD5rW/ +htDfZGI1GsNcQMJfwH//AfvtTmj13nWBuxLD0Rr9NBQ7czZcb3UB42dt6f98 +xP6fcwyS/FwhtvEomxzC+hVHgl/vcIOsmLD0DHRC97u/tY+4wbIQM6VmJl+c +F0cWuoHRVL22+2fs1zKcSda5wbqXaw0H0TZmKfJjX93gzaL/bByHMZ+zet/Y +NHfYfWNW6Bb05Uf5NtIa7uByOjTCahTHm9kf+DHXHZTj7No0v6K3maY15POg +WN/YcSPac2t04rcrPBhVePEmD80K6r5scYcHhd4KWf1osysdtice86D5kmBA +9RtzHonh5q944O7g7BmKdomel5s5yIPd9AVxxXEcXzeNQyt5wAdCwYr9A222 +7JZligdU6r3PHf6F/UD09np7Qjv78Hej/9ChlSNiAZ4wNLB4Zcj/ncXjhHmC +blmaQifjJuvvbxI94aC92b57k+jk5SZRFz1hKkZwOuM3DXJnvr+88d0TEm1m +P32CFvaPeqiK8yF7Vt18GZYIhHsDd1TJ8aGFVhnchWY90ltRo8UHTc+QCT8x +Ecgelt8W68gHseYZF66jZUpaE14t4wNnn5iX7R9YH9X6My+dD9XRteuF6K5O +//L8TD44kStkr6GFMkMWNnl8iFe6UKcnge7jpu8u5YPoNM9+miT2/71ll1Qz +H27eOmLcy0bbPb+rIEnAqgNUt7qUCHa4VoVPyhEwx/UEJw4t4dQheKXCeFFh +E1oYxMrI0iHgYPsLlRvS2F8g2fHQloCIX/Dhb1kR3F5uEmQeQcCUa4odhWa1 ++yx9KCAg78ynbT/Qwu2BX5ziCHjqd5PeLIe5UTlXIpkAxwZvyouDTjyrceI4 +AWXrx6xL0apZL1vWFRCQsFvT/D6TB43L/nmagOL0flPLaSLo1sw2FxUT4Nd/ +cc1D9N7kOeG8cgJ0zu/doT4d610PGP9xB9dvxn02D61m5B5zqBrr13oPHGBy +84oTOQ8ICBdPbO9BFzr7GJc2EXiulVbv5HG9zcXnkrsIUHgsvCepIAIFmu1Q ++5YAG5u951eiWXXU3rciAgQjXkqNaKHGqtjBAQJ6AgdGL89Ar53L1fpOgMxL +6ssD9F3vzKB1PwhQUa4M0lbE3Mphm/Mk9g/ExF9Ar044l6woQcInwwHJR0zu +s2jPJ0kSzLeJOU2hTyoMzg+UJuFUxNWqOCUR5G8pk30/jQT/7D3vrikx57vi +YqgCCeNfPmoMoIX0JPVcEftLKtLXzsTc8GrGDlUSfvc+je9G26i6tbrPxvFU +vcIclLGez+X1aJNgG1Nx6i/GegrvG3VJ8Ks5TZSgxRLOKy3XI2GmnkWyvooI +Ei+U5SsbklBKL0tchxa27qy4bkTC9P/WCg6hx1Kk6r8ZkzA7YOjGTFURBPM4 +bn7zSFDz/rjGGc1KbdXYYk4C3bWxLw0dRTStH5pPgrdURWMFk0eoenUuIGEo +eBZrhHE6y/5fCxLSapKtjdTQhZywnwtJyKuq1uahjQSalcmLSKjdvqwoj8lH +Vx5stSQhoL38bQfjks8Zp6xI0InIH5uhjutt+Fdx82IS+iRSZLzRrOipAm1r +Er7KER2H0OKlg7E1aMOIFVYt6FNBvgM8GxIWPrXly2ow8xdVVqPn5Q4q+KM/ +L+JbzF9CQpWkbHwqkz+TvReMfr7A1KgefeLok4bjaKclr86Kz8L5LbYduI5m +d9TeckCzflTwbqGHFVTGN6KrPbL2XUML6BkJteiJJ/MWJ6N9C+MnJpj+iXXz +PNHJfZvOes8WgehGSXIHrudNh5tBPFpoXbI5C1241dy+gnFzkoY6WmXvUt8v +6Ne/BK8O4vcZnZkMs9DE/P3IHRr343NV8EQs+ojAZrES+vqzlswraNYCMUtf +3L+4LVZKjWhLz8STX3B/baXzKWMtJt9QLsD9l7N4bFiEznodYrsYzyv1uY9Y +H5PHxZVN4Pnyo2xV52ijZ3pmFuP5nz/lUVKFtt2uG8YxJSHH/ovfGyZXjF66 +0ATP70VnpIYO+o1d7368X/WDe4x2oa+6SE1W6pOQXmxXWYdeyWF17cf7Gbk0 +vl5Rl5lvvpY63l/1CRP2RXQn+/CuP/C+K+zkqo2iZ6e1CJark5Bvc+iK/hwR +3F+3vtwD34d0Z5/HPjQrIHxOrBIJLdEtQXVo4ecgpz58X4cvVP3W0hNBwvhW +C0l8f+qw90wSmpUSVVWJ7zNvd/4zs7ki4FaVFHuxSDAp0v0Zj2Y1tW8u/Y+A +YZCRr2T84NW8mJ8ErLtTEz2C7r1yUiJsnIAjxE3CVF8Ec6N2ZWqOEWA3rdZb +gGZNtp71HiFgoV74rJ1oYZtLVvkwAf8D6M/5kQ== + "]], + Line[CompressedData[" +1:eJwV0Hk01GsYB/C5Yax1hW64QuES0wlTyDIPZjLG/FrIFBGqMWO7KN1D1ml0 +iqgmSyfpoo0h2xGlLG+U6ibVaTnXlvRKFO3lFiP39cd73vM532d5z7t8V5xf ++AIajbabnPnbveBy8hcLDLSgxdFtYxTEehZvC7QizmvJkyAKhvcMcfLn/Wt6 +F9VCgd/Z5fY9837SZKF6lQIHmlzLYyUGSYOlxKuWgp9tjR1W1iTfh5d+LKbg +6LoHNt9tiN+Vl35OIHnEYgN7BvHw3cbzsRTEn/KnxxBLTha7siMpiDqS2DpE +fMK0a0dkCAVGTWOFd1aR3DjohoxLQegSy+vXV2NQJEx1DutQYBzGefeIWPLm +o8Gf2hTIjh/u17Al8zdzVabUKdj3fmFTOrFk9KLmUwUfXKsNo0R2JO8K9O54 +yYdJ5GKbYY8hnTPeMdfOh27LNU/XMkl9QP0CoZwPLV9XrSxdi6E9srA3aQsf +3hqL5U8dSH/hMtprKz4czLXZp+tI6lXN3MpN+FDSza5hE+vJurpT9fmw5VnS +vw+JaYORx+KV+PA4z9axzglD2CcsV3vpAyJFTrTaOgwTVbf5vY994Pj3GmGH +M5lnEYoacnxgzeOvprUs0j8X84Y+wIMHcG1yklhSLRYEPORBRE1asw0QP24u +PHmTB39n0TdXEtMSZy/0XeIBHfQzLriT/OudpOQUHjzMSigK8cSQMZEpYJrx +oPeSy/PTxDT8o8N6KQ8CB7qbsrwwjAuOGJm7e8OtrHOuncTuNWX1Xkxv0Mrt +fKEglrCY8QZ/eMMx2c92PhdDeYAsBPS8YYVDhfN14jb7lNe/zHChtVTaEOxN ++t2Yvk3PuKC4Ju228yH+cnaPQsSF1PfS2YENxGm1MwfTvKCuMNZEfwsGhw4l +JmPRekjelrnTVkDeF3M7bVUKB9hPwoYiiW9wBZpxURzQ2sQKOj9vq8tXzwZy +4F5rL4OxFYP6nEpLiB0Hbq2N81YQu3/IGC76wgb/bK1x3wAMRpnax8xz2bBQ +L2j1XWLa/soavwg2fNQcyhvdjsH/Mri8bPOEskf2s6HBJL9bUN/u5QknnZyF +90Ix3KOFhnYZe0AXD586vpv8h2tUjEk9wBUlj68980YLKkYzAQzTWRpqQgxT +/tqmBdsBBvP0BzcQU9+NFzVZAeTa7aBnE0viIwLjfrLAz6A3QRpO9p3IXS33 +YYFl2WmeixiDvrrUWaTqBkPjPRv/IqYxXxX1D7pCo6xZNhiJ4WWKTu4uDReY +OnxNOSiazIu8cjN6fB0s3Pmi0TEBw7eaEo3po0wwmmXb7t2HQdY3FcFKsIdX +L854OO3H0CtILjb0ZYARU7a+glg3OFw3LdsGRmZS5PoSDAm3FGkZYyZkjrnJ +5QNkf2NUvMjMEPpM1GITT5B9/dsk7/XMkGYDj/G5jLgqf1vDKhdUURffsauO +/H818616iRcKchyb0kAYNs85TJ0q24z2W7OVKntIfQHT49O0AI26zabPDmBo ++DEt/VEQhKLEh298eI1BrhutvHRxGIoYoBdnT2DIybxU9V1lJxK8+nZUcxrD +qyRGzDlHIQqpShVQxKyNqc+5XkIUEa+07ChxbXKP/KO/ECUrtKsXzWAINt1E +UXuFqEyPcW+xAsP1uaftNjVCNMnZRdf/iWHrb4k6OWbhSHrxQbr5ghFo7U9K +/0dHhHKjBV7hxO5aggt9y0Wo0G5wYTkxI5/z+ztbEZK3vTljqTQCyhncmWWb +RKjnmXKLtfIIHORyUytyREif7vKfLX0EJje9WB+oIkYr7ne07yF2ksqCS/TE +yCbP+1ADsf8ztRuvzcSIZbx1yRrVEQg+BTEHPMVI6LCH6ag2AorKML+hDDGK +Vfw3nUh833X0jttxMUrsTO9sJuZYLMkqKxGjIxtzfZ3VSW4ZPRbXJkb5eroG +KcStRZqHBu+L0Zn+ouEWYidNKpYaFKPyMlO5grh64k0pmhCjOlFFnJvGCFjd +PmfoMCNG/wPgFOpp + "]], + Line[{{0.548584807779583, -0.0016811695613057898`}, { + 0.5485891113408887, -0.0016789749014940094`}}]}, + "Charting`Private`Tag#2"], + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[2]], + Line[CompressedData[" +1:eJwd0X0s1HEcB/BDl6fqerg/emDu7JLsh7ub5iEcXdMD5WJXpHJOEcPREJXz +0J0NWWgn1SZNC7uOctFq9f1eM0r84gwryu7OPGypnbujy0jfrz8+++y1z2f7 +vLcPUyyJuWJLoVC8UeE+98lV21Zo4FEoAgmRzgTsAaUv2HD+ZkNEJhjemyK2 +YpdQzVHBDUCSzlBwb+B58mIzoQTb3k58zMBumlgqnOoGKkfFyjNsHfd0MKkB +UfHR3npsxks5QfaBhVZH0b6byBoxNfwSCaqsPXVCbAG98FfgCPA6Lu29i50t +/U61HQef7wdY+7FLyKREuwng4K+6GHoLmc1QZcboQUt5ak0BtkatGXk8DSLG +mT2d2HGtfqmbZoE8r97zQBHyi+axJNpPYPuq2EyT4nxpLSpnM3hiF+RxEltg +nN8is4CwWEucDPt5qF8odRkUm64C68Z+Y4EP8y9YZcdU6IuRjcLE7jfrYEnF +clOXIhcMaodY9vDdYRHbhK2hLxo4DlDW/yicU4bzT/LVRxwhfWbn5Q5sVsbu +UxJnyHWxaVPeRl6woY2aaDCr8gf3qRzZSV7mNUiHcyn1EYoKZNuKVHjHDbZb +tOdGsYf6j7q5M2B+2da0XZXIpMfrUikDbm6UVdVii/2qDwYyIWvs2nB1FbI+ +RzfV5Q5F/Ojz5dXIOTm6voH98JubQ9b1WmQi1/gniYDuHjbxXdhZF7YPkgRM +J1b4ZuzfA7kuQd5wNWBhj6QO/1Po4kv3gYyY4d6Ue8grO1btv/jCFFmD61kF +vh/bbFVyoGnek/R7gFxUM8MRHYLOnScIUxPyma9ybXIIbOnI/iDuQAbVPLXL +MZjgP7fsBA28sGSr8/suASz04tu1kQZeidEzT7cuhDMha9K1SeTSh3VxigQ4 +3a6vUc8iR1oiQ/4lwv/IZWCq + "]], + Line[CompressedData[" +1:eJxTTMoPSmViYGCQAGIQ/VFe94P280f2DfOXCpRJJOwPffK1l/sXkD9h+7Fj +Zin741bVhPoA+Qd25CxIdk3Zn1HALNsL5DPwyM1lDknZX/VHYA3fb6D89Re/ +fQpT9i8Q0Tkl+Aeo/2CxGeualP1vXJLYJP4B1U9ovsOllLq/aem5OhWmx/YO +W5P/pAik7e/JDnVLBfIZDh7pTpFP2z/V8A7vMhC/WF05XS9t/4q9L+eoMz+2 +bwg6mFbqk7b/7FWW3VosQL6HpPa2jrT9EmzW3w3YHtsfuMnz8zhj+n6lMwf3 +FQL5DJtMV30XSN+vPcmjbRNIftvLMC2F9P12cmGiJuxA/ftfz59hl74/xazQ +2JwDKJ/jentGdfr+vD/ff5UD+Q2vNwQ/6ErfX36o7tAOIN8hbMVBrVnp+7v8 +egKtOIHqL7lVn9iRvn+yiLBkNZDP4FR6VPpE+v45t2Y+2A3ih9sxFV1P379s +gcKKP0B+g/dzg9PP0vevT1ueb8sFlD+7NUD9W/p+ADRbuu4= + "]]}, "Charting`Private`Tag#3"], {}}}, {}}, <| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0.505, 0.595}, {-0.0175, 0.0025}}, + "Frame" -> {{True, True}, {True, True}}, + "AxesOrigin" -> {0.5050000000000011, 0}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {FontFamily -> "Bitstream Charter", FontSize -> 12, + GrayLevel[0]}, "AspectRatio" -> GoldenRatio^(-1), + "DefaultStyle" -> { + Directive[ + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[2]], + Directive[ + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[2]], + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>, + "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0.5050000000000011, 0}, + DisplayFunction->Identity, + Frame->{{True, True}, {True, True}}, + FrameLabel->{{None, None}, {None, None}}, + FrameStyle->GrayLevel[0], + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + LabelStyle->{FontFamily -> "Bitstream Charter", FontSize -> 12, + GrayLevel[0]}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{0.505, 0.595}, {-0.0175, 0.0025}}, + PlotRangeClipping->True, + PlotRangePadding->{{0, 0}, {0, 0}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.932656407515772*^9, 3.9326564422258167`*^9}, { + 3.932656532139494*^9, 3.932656550887094*^9}, {3.932656602894032*^9, + 3.9326566327093363`*^9}, 3.933319521942895*^9, {3.933319613441224*^9, + 3.933319619845391*^9}, 3.933425696361123*^9, 3.9335860195386953`*^9, { + 3.933586403465225*^9, 3.933586438836339*^9}, {3.933586509185574*^9, + 3.933586516968311*^9}, 3.933656414529748*^9, {3.933656501376521*^9, + 3.933656504642437*^9}, 3.933656554370189*^9, 3.933656760928498*^9, { + 3.93368416064683*^9, 3.933684163137246*^9}, 3.933882090999606*^9, + 3.934453803143113*^9, {3.934454116958088*^9, 3.934454123705853*^9}, { + 3.934535155417897*^9, 3.934535271566082*^9}, {3.934538649918092*^9, + 3.9345387188203506`*^9}, {3.934538789890613*^9, 3.934538950390564*^9}, + 3.934539057804737*^9, {3.934539103926716*^9, 3.934539159190048*^9}}, + CellLabel->"Out[84]=",ExpressionUUID->"4f584ccd-3977-478d-8868-422d8d96a0a6"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"mMax1", "=", + RowBox[{ + RowBox[{"ms", "[", + RowBox[{ + RowBox[{"Function", "[", + RowBox[{"q", ",", + RowBox[{ + FractionBox["1", "2"], + SuperscriptBox["q", "3"]}]}], "]"}], ",", "\[Alpha]", ",", + RowBox[{"1", "/", + SuperscriptBox["\[Alpha]", + RowBox[{"1", "/", "2"}]]}]}], "]"}], "/.", + RowBox[{"\[Alpha]", "->", "0"}]}]}]], "Input", + CellChangeTimes->{{3.934454317842985*^9, 3.934454331837122*^9}, + 3.934539203533786*^9, {3.934539235023342*^9, 3.934539297255068*^9}}, + CellLabel->"In[89]:=",ExpressionUUID->"f4199132-776b-444e-905f-98463bad3266"], + +Cell[BoxData[ + FractionBox["1", + SqrtBox["3"]]], "Output", + CellChangeTimes->{{3.934454330121551*^9, 3.934454332106473*^9}, + 3.93445465812573*^9, 3.93445473958385*^9, 3.934455576295511*^9, { + 3.934534361534361*^9, 3.934534390195144*^9}, 3.9345392382371283`*^9, { + 3.93453929253671*^9, 3.934539297454619*^9}}, + CellLabel->"Out[89]=",ExpressionUUID->"c3a6a8d3-f6e2-4820-ad3e-241c8716142b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"mMax2", "=", + RowBox[{"m", "/.", + RowBox[{ + RowBox[{"FindMaximum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"\[ScriptCapitalS]SSG", "/.", + RowBox[{"solD", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + OverscriptBox["m", "^"], "->", "0"}], ",", + RowBox[{"\[Epsilon]", "->", "0"}]}], "}"}]}], "/.", + RowBox[{"sCompSSG", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"f", "->", + RowBox[{"Function", "[", + RowBox[{"q", ",", + RowBox[{ + FractionBox["1", "2"], + SuperscriptBox["q", "3"]}]}], "]"}]}], ",", + RowBox[{"e", "->", "1"}]}], "}"}]}], ",", + RowBox[{"{", + RowBox[{"m", ",", "0.54", ",", "0.58"}], "}"}]}], "]"}], "[", + RowBox[{"[", "2", "]"}], "]"}]}]}]], "Input", + CellChangeTimes->{{3.933314739280672*^9, 3.933314756544656*^9}, { + 3.933656576734462*^9, 3.933656585286065*^9}, 3.9336567820067987`*^9, { + 3.9336568515795794`*^9, 3.933656877339943*^9}, {3.934454460403748*^9, + 3.934454464065761*^9}, {3.934454597752377*^9, 3.93445459807848*^9}, { + 3.93445470154887*^9, 3.934454716991383*^9}, {3.9345352833409557`*^9, + 3.934535288498915*^9}, {3.934539209037734*^9, 3.9345392186300097`*^9}}, + CellLabel->"In[90]:=",ExpressionUUID->"a2bdf3e3-eab7-4136-8b03-4eb31b271821"], + +Cell[BoxData["0.5628847987495565`"], "Output", + CellChangeTimes->{{3.933314745306559*^9, 3.933314758431819*^9}, + 3.933315049120912*^9, 3.933315120647547*^9, 3.933315229121923*^9, + 3.933315423868957*^9, 3.933315573430499*^9, 3.933315788739806*^9, + 3.933318324481448*^9, 3.933319915214264*^9, 3.933320860731098*^9, + 3.93332292872371*^9, 3.933323191784648*^9, 3.933323306025938*^9, + 3.933323356239356*^9, 3.933323788083864*^9, 3.933323877003141*^9, + 3.93332393450185*^9, 3.933323998814219*^9, 3.933324087301344*^9, { + 3.933324269701145*^9, 3.933324293882853*^9}, 3.93332526379138*^9, + 3.9333259297261887`*^9, 3.933326183776881*^9, 3.933327378197804*^9, + 3.933327853053812*^9, 3.933328974681321*^9, 3.933329472263038*^9, + 3.933333517477831*^9, 3.933335010748927*^9, 3.933335166868107*^9, + 3.933349858749974*^9, 3.933350626532165*^9, 3.93335090065898*^9, + 3.933350935999133*^9, 3.933351033304509*^9, 3.933351225951133*^9, + 3.933378829407076*^9, 3.93338026980488*^9, 3.933381183748728*^9, + 3.933425780329357*^9, 3.93358659997959*^9, 3.933586956015176*^9, + 3.933588307929633*^9, 3.933589026236512*^9, 3.93365644117865*^9, { + 3.933656578447338*^9, 3.9336565854784*^9}, 3.933656771791836*^9, { + 3.933656857857059*^9, 3.9336568777885013`*^9}, 3.933674431119191*^9, + 3.9336842129892406`*^9, 3.933684243169159*^9, 3.9337618028288393`*^9, + 3.933882094186957*^9, 3.933882642515559*^9, {3.934453813171753*^9, + 3.934453825684252*^9}, 3.934454401158782*^9, 3.934454464319905*^9, + 3.93445459834898*^9, 3.934454658802853*^9, {3.934454703357885*^9, + 3.934454740091306*^9}, 3.93445557693827*^9, {3.934534362138605*^9, + 3.934534390566085*^9}, 3.934535289238173*^9, 3.934539228024712*^9, + 3.9345393000323563`*^9}, + CellLabel->"Out[90]=",ExpressionUUID->"d0a3d4a6-34ba-40f2-a7d0-f233befe2a26"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"mMax3", "=", + RowBox[{"m", "/.", + RowBox[{ + RowBox[{"FindMaximum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"\[ScriptCapitalS]SSG", "/.", + RowBox[{"solD", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{ + OverscriptBox["m", "^"], "->", "0"}], ",", + RowBox[{"\[Epsilon]", "->", "0"}]}], "}"}]}], "/.", + RowBox[{"sCompSSG", "[", + RowBox[{"[", "3", "]"}], "]"}]}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"f", "->", + RowBox[{"Function", "[", + RowBox[{"q", ",", + RowBox[{ + FractionBox["1", "2"], + SuperscriptBox["q", "3"]}]}], "]"}]}], ",", + RowBox[{"e", "->", "1"}]}], "}"}]}], ",", + RowBox[{"{", + RowBox[{"m", ",", "0.55", ",", "0.58"}], "}"}]}], "]"}], "[", + RowBox[{"[", "2", "]"}], "]"}]}]}]], "Input", + CellChangeTimes->{{3.934453894828047*^9, 3.934453907666699*^9}, { + 3.934454433553924*^9, 3.934454491260346*^9}, {3.934454600062752*^9, + 3.934454605944893*^9}, {3.93445472062059*^9, 3.934454735373291*^9}, { + 3.934535299983774*^9, 3.934535302539338*^9}, {3.934539220334485*^9, + 3.934539224822113*^9}}, + CellLabel->"In[91]:=",ExpressionUUID->"bdc90b67-e81a-4882-976a-f1ebbb721caf"], + +Cell[BoxData["0.5658210450298273`"], "Output", + CellChangeTimes->{ + 3.9344546062800913`*^9, 3.934454659416494*^9, {3.934454723886532*^9, + 3.934454740655982*^9}, 3.9344555776405067`*^9, {3.934534362481773*^9, + 3.934534391405923*^9}, 3.934535303147727*^9, 3.934539228450254*^9, + 3.934539300336422*^9}, + CellLabel->"Out[91]=",ExpressionUUID->"542b581b-e106-4e4d-9ba9-cf5b96db734b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"testdat", "=", + RowBox[{"DeleteCases", "[", + RowBox[{ + RowBox[{"Flatten", "@", + RowBox[{ + "Import", "[", + "\"\<~/doc/research/least_squares/code/test_1.0_16.dat\>\"", "]"}]}], + ",", "\"\<-nan\>\""}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"testdat2", "=", + RowBox[{"DeleteCases", "[", + RowBox[{ + RowBox[{"Flatten", "@", + RowBox[{ + "Import", "[", + "\"\<~/doc/research/least_squares/code/test_1.0_32.dat\>\"", "]"}]}], + ",", "\"\<-nan\>\""}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"testdat3", "=", + RowBox[{"DeleteCases", "[", + RowBox[{ + RowBox[{"Flatten", "@", + RowBox[{ + "Import", "[", + "\"\<~/doc/research/least_squares/code/test_1.0_64.dat\>\"", "]"}]}], + ",", "\"\<-nan\>\""}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"testdat4", "=", + RowBox[{"DeleteCases", "[", + RowBox[{ + RowBox[{"Flatten", "@", + RowBox[{ + "Import", "[", + "\"\<~/doc/research/least_squares/code/test_1.0_128.dat\>\"", "]"}]}], + ",", "\"\<-nan\>\""}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"testdat5", "=", + RowBox[{"DeleteCases", "[", + RowBox[{ + RowBox[{"Flatten", "@", + RowBox[{ + "Import", "[", + "\"\<~/doc/research/least_squares/code/test_1.0_256.dat\>\"", "]"}]}], + ",", "\"\<-nan\>\""}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"testdat6", "=", + RowBox[{"DeleteCases", "[", + RowBox[{ + RowBox[{"Flatten", "@", + RowBox[{ + "Import", "[", + "\"\<~/doc/research/least_squares/code/test_1.0_512.dat\>\"", "]"}]}], + ",", "\"\<-nan\>\""}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"testdat7", "=", + RowBox[{"DeleteCases", "[", + RowBox[{ + RowBox[{"Flatten", "@", + RowBox[{ + "Import", "[", + "\"\<~/doc/research/least_squares/code/test_1.0_1024.dat\>\"", "]"}]}], + ",", "\"\<-nan\>\""}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"testdat8", "=", + RowBox[{"DeleteCases", "[", + RowBox[{ + RowBox[{"Flatten", "@", + RowBox[{ + "Import", "[", + "\"\<~/doc/research/least_squares/code/test_1.0_2048.dat\>\"", "]"}]}], + ",", "\"\<-nan\>\""}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{"Histogram", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"(*", + RowBox[{ + RowBox[{"Abs", "@", "testdat"}], ",", + RowBox[{"Abs", "@", "testdat2"}], ",", + RowBox[{"Abs", "@", "testdat3"}], ","}], "*)"}], + RowBox[{ + RowBox[{"Abs", "@", "testdat4"}], ",", + RowBox[{"Abs", "@", "testdat5"}], ",", + RowBox[{"Abs", "@", "testdat6"}], ",", + RowBox[{"Abs", "@", "testdat7"}], ",", + RowBox[{"Abs", "@", "testdat8"}]}], "}"}], ",", "35", ",", + RowBox[{"{", + RowBox[{"\"\<Log\>\"", ",", "\"\<Probability\>\""}], "}"}], ",", + RowBox[{"Prolog", "->", + RowBox[{"{", + RowBox[{ + RowBox[{"Line", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"mMax1", ",", + RowBox[{"-", "10"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"mMax1", ",", "10"}], "}"}]}], "}"}], "]"}], ",", + RowBox[{"Line", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"mMax2", ",", + RowBox[{"-", "10"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"mMax2", ",", "10"}], "}"}]}], "}"}], "]"}], ",", + RowBox[{"Line", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"mMax3", ",", + RowBox[{"-", "10"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"mMax3", ",", "10"}], "}"}]}], "}"}], "]"}]}], "}"}]}]}], + "]"}]}], "Input", + CellChangeTimes->CompressedData[" +1:eJwdyk0og3EAx/GRA1IkUUKktLIWy2GS5jHbsGdj81qYHq/l4G3DWkkLMVOU +2kHjgJMUeX+JvNQO2nBA8rLkZQd6pMhbiv/vf/j2uXwTalr09f4CgSCWBL/W +vXlpLM/sDk6xMHi2qwJyTncllGR2zMHWwZt5WHy3tgHHm8834aOSe5QTe20O +H5SLXp7h+8bxK4z2jHxC4cQV9YjXReYQe77HoqB0q78Arqoui+BoZr4B8vf1 +VHMgK3sgPs3rs6Cw21LC41dHlMJr7iMxRsMztxm1SXDW2JkMU6zLqTC0NUgJ +Q7Lu8+Cl1aODYrulHJrtXVUwfdhKlQaK26A3rqEdlmn76mKJvulJ6innGRAR +nb8BQ7BpS7mvIC6e2Q6gotdkVBHvKi6oTj1rlmh5RvS2Q3VPxRVJiZoLOTUs +23X4RzyZ2XXDJvXqXm4Bz/woF/Zhsd3vvbqQZxymRmrMzJeBI4ZvL3EwLb7f +ZSPuyFao/+IE4IE= + "], + CellLabel-> + "In[123]:=",ExpressionUUID->"b7c04588-51c4-46ba-b43a-323e54fb82c5"], + +Cell[BoxData[ + GraphicsBox[{ + {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ + Opacity[0.371], Thickness[Small]}], {{}, + {RGBColor[0.97858, 0.678934, 0.157834], Opacity[0.5], EdgeForm[{Opacity[ + 0.371], Thickness[Small]}], + RectangleBox[{0.27, -7.97166860472579}, {0.28, -6.970730078143525}, + RoundingRadius->0], + RectangleBox[{0.34, -7.97166860472579}, {0.35, -6.970730078143525}, + RoundingRadius->0], + RectangleBox[{0.35, -7.97166860472579}, {0.36, -5.872117789475416}, + RoundingRadius->0], + RectangleBox[{0.36, -7.97166860472579}, {0.37, -6.970730078143525}, + RoundingRadius->0], + RectangleBox[{0.38, -7.97166860472579}, {0.39, -6.277582897583581}, + RoundingRadius->0], + RectangleBox[{0.39, -7.97166860472579}, {0.4, -5.178970608915471}, + RoundingRadius->0], + RectangleBox[{0.4, -7.97166860472579}, {0.41, -5.0248199290882125}, + RoundingRadius->0], + RectangleBox[{0.41, -7.97166860472579}, {0.42, -4.485823428355525}, + RoundingRadius->0], + RectangleBox[{0.42, -7.97166860472579}, {0.43, -4.89128853646369}, + RoundingRadius->0], + RectangleBox[{0.43, -7.97166860472579}, {0.44, -3.9262076404201025}, + RoundingRadius->0], + RectangleBox[{0.44, -7.97166860472579}, {0.45, -3.7126335401220434}, + RoundingRadius->0], + RectangleBox[{0.45, -7.97166860472579}, {0.46, -3.6748932121391964}, + RoundingRadius->0], + RectangleBox[{0.46, -7.97166860472579}, {0.47, -3.1865404442252645}, + RoundingRadius->0], + RectangleBox[{0.47, -7.97166860472579}, {0.48, -2.9276788103089753}, + RoundingRadius->0], + RectangleBox[{0.48, -7.97166860472579}, {0.49, -3.019486359562098}, + RoundingRadius->0], + RectangleBox[{0.49, -7.97166860472579}, {0.5, -2.69406395912747}, + RoundingRadius->0], + RectangleBox[{0.5, -7.97166860472579}, {0.51, -2.493393263665319}, + RoundingRadius->0], + RectangleBox[{0.51, -7.97166860472579}, {0.52, -2.2702497123511094}, + RoundingRadius->0], + RectangleBox[{0.52, -7.97166860472579}, {0.53, -2.493393263665319}, + RoundingRadius->0], + RectangleBox[{0.53, -7.97166860472579}, {0.54, -2.448941501094485}, + RoundingRadius->0], + RectangleBox[{0.54, -7.97166860472579}, {0.55, -2.528078821653209}, + RoundingRadius->0], + RectangleBox[{0.55, -7.97166860472579}, {0.56, -2.6269246562898414}, + RoundingRadius->0], + RectangleBox[{0.56, -7.97166860472579}, {0.57, -2.859856213970214}, + RoundingRadius->0], + RectangleBox[{0.57, -7.97166860472579}, {0.58, -3.56953269648137}, + RoundingRadius->0], + RectangleBox[{0.58, -7.97166860472579}, {0.59, -3.56953269648137}, + RoundingRadius->0], + RectangleBox[{0.59, -7.97166860472579}, {0.6, -3.5367428736583792}, + RoundingRadius->0], + RectangleBox[{0.6, -7.97166860472579}, {0.61, -4.198141355903744}, + RoundingRadius->0], + RectangleBox[{0.61, -7.97166860472579}, {0.62, -5.178970608915471}, + RoundingRadius->0], + RectangleBox[{0.62, -7.97166860472579}, {0.63, -5.584435717023635}, + RoundingRadius->0], + RectangleBox[{0.63, -7.97166860472579}, {0.64, -6.277582897583581}, + RoundingRadius->0], + RectangleBox[{0.64, -7.97166860472579}, {0.65, -5.872117789475416}, + RoundingRadius->0], + RectangleBox[{0.65, -7.97166860472579}, {0.66, -6.970730078143525}, + RoundingRadius->0], + RectangleBox[{0.66, -7.97166860472579}, {0.67, -6.970730078143525}, + RoundingRadius->0]}, {}, {}}, {{}, + {RGBColor[0.368417, 0.506779, 0.709798], Opacity[0.5], EdgeForm[{Opacity[ + 0.371], Thickness[Small]}], + RectangleBox[{0.22, -7.97166860472579}, {0.23, -6.907755278982137}, + RoundingRadius->0], + RectangleBox[{0.42, -7.97166860472579}, {0.43, -6.214608098422191}, + RoundingRadius->0], + RectangleBox[{0.43, -7.97166860472579}, {0.44, -5.521460917862246}, + RoundingRadius->0], + RectangleBox[{0.46, -7.97166860472579}, {0.47, -4.961845129926823}, + RoundingRadius->0], + RectangleBox[{0.47, -7.97166860472579}, {0.48, -4.8283137373023015}, + RoundingRadius->0], + RectangleBox[{0.48, -7.97166860472579}, {0.49, -3.912023005428146}, + RoundingRadius->0], + RectangleBox[{0.49, -7.97166860472579}, {0.5, -3.611918412977808}, + RoundingRadius->0], + RectangleBox[{0.5, -7.97166860472579}, {0.51, -3.101092789211817}, + RoundingRadius->0], + RectangleBox[{0.51, -7.97166860472579}, {0.52, -2.631089159966082}, + RoundingRadius->0], + RectangleBox[{0.52, -7.97166860472579}, {0.53, -2.1286317858706076}, + RoundingRadius->0], + RectangleBox[{0.53, -7.97166860472579}, {0.54, -1.8838747581358606}, + RoundingRadius->0], + RectangleBox[{0.54, -7.97166860472579}, {0.55, -1.8904754421672127}, + RoundingRadius->0], + RectangleBox[{0.55, -7.97166860472579}, {0.56, -1.9519282213808764}, + RoundingRadius->0], + RectangleBox[{0.56, -7.97166860472579}, {0.57, -2.312635428847547}, + RoundingRadius->0], + RectangleBox[{0.57, -7.97166860472579}, {0.58, -2.6736487743848776}, + RoundingRadius->0], + RectangleBox[{0.58, -7.97166860472579}, {0.59, -3.123565645063876}, + RoundingRadius->0], + RectangleBox[{0.59, -7.97166860472579}, {0.6, -3.912023005428146}, + RoundingRadius->0], + RectangleBox[{0.6, -7.97166860472579}, {0.61, -4.422848629194137}, + RoundingRadius->0], + RectangleBox[{0.61, -7.97166860472579}, {0.62, -5.521460917862246}, + RoundingRadius->0], + RectangleBox[{0.62, -7.97166860472579}, {0.63, -6.907755278982137}, + RoundingRadius->0], + RectangleBox[{0.63, -7.97166860472579}, {0.64, -6.907755278982137}, + RoundingRadius->0]}, {}, {}}, {{}, + {RGBColor[0.560181, 0.691569, 0.194885], Opacity[0.5], EdgeForm[{Opacity[ + 0.371], Thickness[Small]}], + RectangleBox[{0.48, -7.97166860472579}, {0.49, -6.97166860472579}, + RoundingRadius->0], + RectangleBox[{0.5, -7.97166860472579}, {0.51, -5.179909135497735}, + RoundingRadius->0], + RectangleBox[{0.51, -7.97166860472579}, {0.52, -4.199079882486009}, + RoundingRadius->0], + RectangleBox[{0.52, -7.97166860472579}, {0.53, -3.0596455992976437}, + RoundingRadius->0], + RectangleBox[{0.53, -7.97166860472579}, {0.54, -2.22673647636254}, + RoundingRadius->0], + RectangleBox[{0.54, -7.97166860472579}, {0.55, -1.7299215896661475}, + RoundingRadius->0], + RectangleBox[{0.55, -7.97166860472579}, {0.56, -1.4422395172143665}, + RoundingRadius->0], + RectangleBox[{0.56, -7.97166860472579}, {0.57, -1.6103764390163646}, + RoundingRadius->0], + RectangleBox[{0.57, -7.97166860472579}, {0.58, -1.9880619830174533}, + RoundingRadius->0], + RectangleBox[{0.58, -7.97166860472579}, {0.59, -3.001376691173668}, + RoundingRadius->0], + RectangleBox[{0.59, -7.97166860472579}, {0.6, -3.975936331171799}, + RoundingRadius->0], + RectangleBox[{0.6, -7.97166860472579}, {0.61, -5.362230692291689}, + RoundingRadius->0]}, {}, {}}, {{}, + {RGBColor[0.922526, 0.385626, 0.209179], Opacity[0.5], EdgeForm[{Opacity[ + 0.371], Thickness[Small]}], + RectangleBox[{0.51, -7.97166860472579}, {0.52, -6.35088571671474}, + RoundingRadius->0], + RectangleBox[{0.53, -7.97166860472579}, {0.54, -6.35088571671474}, + RoundingRadius->0], + RectangleBox[{0.54, -7.97166860472579}, {0.55, -2.8245251920985783}, + RoundingRadius->0], + RectangleBox[{0.55, -7.97166860472579}, {0.56, -1.416411783584048}, + RoundingRadius->0], + RectangleBox[{0.56, -7.97166860472579}, {0.57, -0.9527230151969868}, + RoundingRadius->0], + RectangleBox[{0.57, -7.97166860472579}, {0.58, -1.4680837941283686}, + RoundingRadius->0], + RectangleBox[{0.58, -7.97166860472579}, {0.59, -2.687324070585093}, + RoundingRadius->0], + RectangleBox[{0.59, -7.97166860472579}, {0.6, -4.5591262474866845}, + RoundingRadius->0]}, {}, {}}, {{}, + {RGBColor[0.528488, 0.470624, 0.701351], Opacity[0.5], EdgeForm[{Opacity[ + 0.371], Thickness[Small]}], + RectangleBox[{0.55, -7.97166860472579}, {0.56, -2.1972245773362196}, + RoundingRadius->0], + RectangleBox[{0.56, -7.97166860472579}, {0.57, -0.6931471805599453}, + RoundingRadius->0], + RectangleBox[{0.57, -7.97166860472579}, {0.58, -0.9444616088408514}, + RoundingRadius-> + 0]}, {}, {}}}, {{{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ +{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ +{}}, {}}, {{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ +{}, {}, {}, {}, {}}, {}}, {{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, \ +{}}, {{{}, {}, {}, {}, {}, {}, {}, {}}, {}}, {{{}, {}, {}}, {}}}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0.211, -7.97166860472579}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{ + Charting`ScaledTicks[{Log, Exp}], + Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + PlotRange->{{0.22, 0.67}, {All, All}}, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, + Prolog->{ + LineBox[ + NCache[{{3^Rational[-1, 2], -10}, {3^Rational[-1, 2], 10}}, {{ + 0.5773502691896258, -10}, {0.5773502691896258, 10}}]], + LineBox[{{0.5628847987495565, -10}, {0.5628847987495565, 10}}], + LineBox[{{0.5658210450298273, -10}, {0.5658210450298273, 10}}]}, + Ticks->FrontEndValueCache[{Automatic, + Charting`ScaledTicks[{Log, Exp}]}, {Automatic, {{-7.600902459542082, + FormBox[ + TemplateBox[{"\[Times]", "\"\[Times]\"", "5", + TemplateBox[{"10", + RowBox[{"-", "4"}]}, "Superscript", SyntaxForm -> + SuperscriptBox]}, "RowWithSeparators"], TraditionalForm], {0.01, + 0.}}, {-6.907755278982137, + FormBox["0.001`", TraditionalForm], {0.01, 0.}}, {-5.298317366548036, + FormBox[ + TagBox[ + InterpretationBox[ + StyleBox["\"0.005\"", ShowStringCharacters -> False], + 0.005`15.954589770191003, AutoDelete -> True], NumberForm[#, { + DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, + 0.}}, {-4.605170185988091, + FormBox[ + TagBox[ + InterpretationBox[ + StyleBox["\"0.010\"", ShowStringCharacters -> False], + 0.01`15.954589770191003, AutoDelete -> True], NumberForm[#, { + DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, + 0.}}, {-2.995732273553991, + FormBox[ + TagBox[ + InterpretationBox[ + StyleBox["\"0.050\"", ShowStringCharacters -> False], + 0.05`15.954589770191003, AutoDelete -> True], NumberForm[#, { + DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, + 0.}}, {-2.3025850929940455`, + FormBox[ + TagBox[ + InterpretationBox[ + StyleBox["\"0.100\"", ShowStringCharacters -> False], + 0.1`15.954589770191003, AutoDelete -> True], NumberForm[#, { + DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, + 0.}}, {-0.6931471805599453, + FormBox[ + TagBox[ + InterpretationBox[ + StyleBox["\"0.500\"", ShowStringCharacters -> False], + 0.5`15.954589770191003, AutoDelete -> True], NumberForm[#, { + DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, + 0.}}, {-9.210340371976182, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-8.517193191416238, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-8.111728083308073, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-7.824046010856292, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-7.418580902748128, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-7.264430222920869, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-7.1308988302963465`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-7.013115794639964, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-6.214608098422191, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-5.809142990314028, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-5.521460917862246, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-5.115995809754082, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-4.961845129926823, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-4.8283137373023015`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-4.710530701645918, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-3.912023005428146, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-3.506557897319982, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-3.2188758248682006`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-2.8134107167600364`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-2.659260036932778, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-2.5257286443082556`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-2.4079456086518722`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-1.6094379124341003`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-1.2039728043259361`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.916290731874155, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.5108256237659907, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.35667494393873245`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.2231435513142097, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.10536051565782628`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {0., + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}}}]]], "Output", + CellChangeTimes->{{3.932742396630278*^9, 3.9327424144995546`*^9}, { + 3.932742447839639*^9, 3.932742470555908*^9}, 3.932742501154447*^9, { + 3.932742548797364*^9, 3.932742954731631*^9}, {3.932743035172263*^9, + 3.932743206053399*^9}, {3.932743245136064*^9, 3.932743424223017*^9}, { + 3.932743483567083*^9, 3.932743605277769*^9}, {3.932743636722801*^9, + 3.932743714381294*^9}, {3.932743746757825*^9, 3.932743826359727*^9}, { + 3.932743863883753*^9, 3.932743997547783*^9}, 3.932744035510488*^9, + 3.93274407065954*^9, {3.932744154687559*^9, 3.932744171066657*^9}, { + 3.932744448800334*^9, 3.932744485617804*^9}, 3.932744523955897*^9, + 3.932744586411766*^9, {3.932744820652643*^9, 3.932744824476355*^9}, { + 3.932744966892871*^9, 3.9327449855132027`*^9}, {3.932745028938342*^9, + 3.932745077349846*^9}, 3.932775406321521*^9, {3.93277549889166*^9, + 3.932775505123302*^9}, 3.932775842433298*^9, {3.932776016536057*^9, + 3.932776028002948*^9}, {3.932776345895613*^9, 3.932776349812449*^9}, + 3.932777246461788*^9, 3.932777494171626*^9, 3.93277759930291*^9, + 3.93278241186591*^9, 3.932812003971925*^9, {3.932827135253753*^9, + 3.932827175782954*^9}, 3.93282739771509*^9, 3.9328279046541367`*^9, + 3.932828538693534*^9, 3.932828607689024*^9, 3.932828638219002*^9, { + 3.932828775323155*^9, 3.932828804648417*^9}, 3.932829381711228*^9, + 3.932829584578066*^9, 3.932829687167304*^9, 3.932829753580118*^9, { + 3.932830349014215*^9, 3.932830370662455*^9}, 3.932830417254873*^9, + 3.932830483802674*^9, {3.932830603507266*^9, 3.932830650600008*^9}, { + 3.932830878460166*^9, 3.932830906967059*^9}, 3.932831222113948*^9, { + 3.932833167977345*^9, 3.9328331774953623`*^9}, 3.932866901243063*^9, + 3.932867394886948*^9, 3.9328677578417253`*^9, 3.932869045230961*^9, + 3.932877672695775*^9, 3.932889434084055*^9, {3.933311933372965*^9, + 3.933311942623292*^9}, 3.933314830469591*^9, 3.933314948288542*^9, + 3.933315044488606*^9, 3.933315117827179*^9, 3.9333152258401213`*^9, + 3.9333154191103077`*^9, 3.933315570956916*^9, 3.9333157861596403`*^9, + 3.933318318121373*^9, 3.933319439975029*^9, 3.93331990955374*^9, + 3.933320855778112*^9, 3.933322924742893*^9, 3.933323186317505*^9, + 3.933323298200925*^9, 3.93332335298956*^9, 3.933323783631224*^9, + 3.933323873040122*^9, 3.9333239308184443`*^9, 3.9333239932293863`*^9, + 3.933324083916263*^9, {3.933324265529394*^9, 3.933324291215434*^9}, + 3.933325260808852*^9, 3.933325925286716*^9, 3.93332618014415*^9, + 3.933327370761917*^9, 3.933327848304276*^9, 3.9333289669562607`*^9, + 3.933329468914146*^9, 3.933333512036096*^9, 3.933333547728085*^9, + 3.933335006867407*^9, 3.933335162358666*^9, 3.933338874401442*^9, + 3.933349853880422*^9, 3.93335062309719*^9, {3.933350809353763*^9, + 3.933350818687622*^9}, 3.933350892808874*^9, 3.933350929706706*^9, + 3.933351028308259*^9, 3.933351221490337*^9, 3.933378805150837*^9, + 3.933380263979814*^9, 3.9333811790101843`*^9, 3.933425778978853*^9, + 3.933586548363879*^9, 3.933588301781197*^9, 3.933589021527622*^9, + 3.933656418130969*^9, 3.933674429424563*^9, 3.933684207246712*^9, + 3.933732456477181*^9, 3.933761796861334*^9, 3.93388209265482*^9, + 3.933882636654115*^9, 3.9344538085033703`*^9, 3.934455575746295*^9, { + 3.934456572156658*^9, 3.934456590041269*^9}, 3.934458327049989*^9, + 3.934458604800858*^9, 3.934515566158003*^9, 3.934534356809184*^9, + 3.934534392268108*^9, 3.9345353078480988`*^9, {3.934539300731804*^9, + 3.9345393184029303`*^9}, 3.934540129597991*^9}, + CellLabel-> + "Out[131]=",ExpressionUUID->"b775e616-2fc8-4073-ba47-b224ed44076b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Histogram", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Abs", "@", "testdat7"}], ",", + RowBox[{"Abs", "@", "testdat8"}]}], "}"}], ",", "35", ",", + "\"\<Probability\>\"", ",", + RowBox[{"Prolog", "->", + RowBox[{"{", + RowBox[{ + RowBox[{"Line", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"mMax1", ",", + RowBox[{"-", "10"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"mMax1", ",", "10"}], "}"}]}], "}"}], "]"}], ",", + RowBox[{"Line", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"mMax2", ",", + RowBox[{"-", "10"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"mMax2", ",", "10"}], "}"}]}], "}"}], "]"}], ",", + RowBox[{"Line", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"mMax3", ",", + RowBox[{"-", "10"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"mMax3", ",", "10"}], "}"}]}], "}"}], "]"}]}], "}"}]}]}], + "]"}]], "Input", + CellChangeTimes->{{3.934456622700934*^9, 3.934456623906262*^9}, { + 3.93445667139495*^9, 3.934456673780755*^9}, {3.9345393217278957`*^9, + 3.9345393239916487`*^9}}, + CellLabel-> + "In[132]:=",ExpressionUUID->"d5c71612-e41c-40a0-8f22-153b347f934a"], + +Cell[BoxData[ + GraphicsBox[{ + {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ + Opacity[0.392], Thickness[Small]}], {{}, + {RGBColor[0.97858, 0.678934, 0.157834], Opacity[0.5], EdgeForm[{Opacity[ + 0.392], Thickness[Small]}], + RectangleBox[{0.512, 0.}, {0.514, 0.0017452006980802793}, + RoundingRadius->0], + RectangleBox[{0.538, 0.}, {0.54, 0.0017452006980802793}, + RoundingRadius->0], + RectangleBox[{0.54, 0.}, {0.542, 0.005235602094240838}, + RoundingRadius->0], + RectangleBox[{0.542, 0.}, {0.544, 0.008726003490401396}, + RoundingRadius->0], + RectangleBox[{0.544, 0.}, {0.546, 0.010471204188481676}, + RoundingRadius->0], + RectangleBox[{0.546, 0.}, {0.548, 0.015706806282722512}, + RoundingRadius->0], + RectangleBox[{0.548, 0.}, {0.55, 0.019197207678883072}, + RoundingRadius->0], + RectangleBox[{0.55, 0.}, {0.552, 0.02617801047120419}, + RoundingRadius->0], + RectangleBox[{0.552, 0.}, {0.554, 0.031413612565445025}, + RoundingRadius->0], + RectangleBox[{0.554, 0.}, {0.556, 0.06108202443280977}, + RoundingRadius->0], + RectangleBox[{0.556, 0.}, {0.558, 0.0506108202443281}, + RoundingRadius->0], + RectangleBox[{0.558, 0.}, {0.56, 0.07329842931937172}, + RoundingRadius->0], + RectangleBox[{0.56, 0.}, {0.562, 0.07155322862129145}, + RoundingRadius->0], + RectangleBox[{0.562, 0.}, {0.564, 0.08202443280977312}, + RoundingRadius->0], + RectangleBox[{0.564, 0.}, {0.566, 0.06806282722513089}, + RoundingRadius->0], + RectangleBox[{0.566, 0.}, {0.568, 0.08726003490401396}, + RoundingRadius->0], + RectangleBox[{0.568, 0.}, {0.57, 0.07678883071553229}, + RoundingRadius->0], + RectangleBox[{0.57, 0.}, {0.572, 0.04537521815008726}, + RoundingRadius->0], + RectangleBox[{0.572, 0.}, {0.574, 0.06806282722513089}, + RoundingRadius->0], + RectangleBox[{0.574, 0.}, {0.576, 0.04363001745200698}, + RoundingRadius->0], + RectangleBox[{0.576, 0.}, {0.578, 0.041884816753926704}, + RoundingRadius->0], + RectangleBox[{0.578, 0.}, {0.58, 0.031413612565445025}, + RoundingRadius->0], + RectangleBox[{0.58, 0.}, {0.582, 0.027923211169284468}, + RoundingRadius->0], + RectangleBox[{0.582, 0.}, {0.584, 0.017452006980802792}, + RoundingRadius->0], + RectangleBox[{0.584, 0.}, {0.586, 0.013961605584642234}, + RoundingRadius->0], + RectangleBox[{0.586, 0.}, {0.588, 0.0034904013961605585}, + RoundingRadius->0], + RectangleBox[{0.588, 0.}, {0.59, 0.005235602094240838}, + RoundingRadius->0], + RectangleBox[{0.59, 0.}, {0.592, 0.0034904013961605585}, + RoundingRadius->0], + RectangleBox[{0.592, 0.}, {0.594, 0.0034904013961605585}, + RoundingRadius->0], + RectangleBox[{0.594, 0.}, {0.596, 0.0034904013961605585}, + RoundingRadius->0]}, {}, {}}, {{}, + {RGBColor[0.368417, 0.506779, 0.709798], Opacity[0.5], EdgeForm[{Opacity[ + 0.392], Thickness[Small]}], + RectangleBox[{0.552, 0.}, {0.554, 0.05555555555555555}, + RoundingRadius->0], + RectangleBox[{0.558, 0.}, {0.56, 0.05555555555555555}, + RoundingRadius->0], + RectangleBox[{0.56, 0.}, {0.562, 0.16666666666666666}, + RoundingRadius->0], + RectangleBox[{0.562, 0.}, {0.564, 0.1111111111111111}, + RoundingRadius->0], + RectangleBox[{0.564, 0.}, {0.566, 0.1111111111111111}, + RoundingRadius->0], + RectangleBox[{0.566, 0.}, {0.568, 0.05555555555555555}, + RoundingRadius->0], + RectangleBox[{0.568, 0.}, {0.57, 0.05555555555555555}, + RoundingRadius->0], + RectangleBox[{0.57, 0.}, {0.572, 0.16666666666666666}, + RoundingRadius->0], + RectangleBox[{0.572, 0.}, {0.574, 0.1111111111111111}, + RoundingRadius->0], + RectangleBox[{0.574, 0.}, {0.576, 0.1111111111111111}, + RoundingRadius-> + 0]}, {}, {}}}, {{{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ +{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {}}, \ +{{{}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {}}}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0.51032, 0.}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + PlotRange->{{0.512, 0.596}, {All, All}}, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, + Prolog->{ + LineBox[ + NCache[{{3^Rational[-1, 2], -10}, {3^Rational[-1, 2], 10}}, {{ + 0.5773502691896258, -10}, {0.5773502691896258, 10}}]], + LineBox[{{0.5628847987495565, -10}, {0.5628847987495565, 10}}], + LineBox[{{0.5658210450298273, -10}, {0.5658210450298273, 10}}]}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{3.93445662427499*^9, 3.934456674173664*^9, + 3.934458327872816*^9, 3.934458605485795*^9, 3.934515567802866*^9, + 3.934534357206147*^9, 3.93453439358037*^9, 3.934535308706031*^9, + 3.934539324478046*^9, 3.934540130218936*^9}, + CellLabel-> + "Out[132]=",ExpressionUUID->"4ecffab3-f026-461d-b513-af94d64cbec9"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Length", "/@", + RowBox[{"{", + RowBox[{ + "testdat2", ",", "testdat3", ",", "testdat4", ",", "testdat5", ",", + "testdat6", ",", "testdat7", ",", "testdat8"}], "}"}]}]], "Input", + CellChangeTimes->{{3.933315830790056*^9, 3.933315839043951*^9}, { + 3.933323187989256*^9, 3.933323188934312*^9}, {3.934456311887268*^9, + 3.934456312895072*^9}}, + CellLabel-> + "In[133]:=",ExpressionUUID->"6729ea2e-916f-4c77-ad4d-d272adeb529e"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + "977", ",", "1000", ",", "1065", ",", "1000", ",", "1066", ",", "573", ",", + "18"}], "}"}]], "Output", + CellChangeTimes->{{3.93331583257968*^9, 3.933315839260758*^9}, + 3.9333183200470448`*^9, 3.933319442564992*^9, {3.933319906042847*^9, + 3.933319910736731*^9}, 3.93332085758463*^9, 3.933322926674952*^9, + 3.933323189200471*^9, 3.933323299301597*^9, 3.93332335423453*^9, + 3.933323785263589*^9, 3.933323874918425*^9, 3.933323932384793*^9, + 3.933323995306325*^9, 3.933324085257669*^9, {3.93332426685035*^9, + 3.93332429217181*^9}, 3.933325261573961*^9, 3.933325927270565*^9, + 3.933326182048544*^9, 3.933327373659232*^9, 3.933327850276997*^9, + 3.933328968290894*^9, 3.933329469627056*^9, 3.9333335136155*^9, + 3.933333550147236*^9, 3.933335008140473*^9, 3.9333351637952137`*^9, + 3.9333498552058687`*^9, 3.933350624381597*^9, {3.933350815250695*^9, + 3.933350820734359*^9}, 3.933350895117412*^9, 3.933350932130539*^9, + 3.933351030309966*^9, 3.933351223005116*^9, 3.933378825027375*^9, + 3.933380266128498*^9, 3.933381180940559*^9, 3.9334257796070843`*^9, + 3.93358659403225*^9, 3.933586907419921*^9, 3.933588304539248*^9, + 3.933589022867452*^9, 3.933656419758029*^9, 3.933674430288157*^9, + 3.933684208384455*^9, 3.933761800077931*^9, 3.933882093219466*^9, + 3.9338826397916737`*^9, 3.934453810294463*^9, 3.93445434908902*^9, + 3.9344547417181997`*^9, 3.934455578542321*^9, 3.934456313275104*^9, + 3.934458329503232*^9, 3.9344586064921303`*^9, 3.934515569075493*^9, + 3.934534395511795*^9, 3.934535309339665*^9, 3.934539328160946*^9, + 3.9345401314132566`*^9}, + CellLabel-> + "Out[133]=",ExpressionUUID->"16ffcae8-c60a-4d71-8eff-cb2c15276070"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"fittest1", "=", + RowBox[{"LinearModelFit", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Log", "@", + RowBox[{"Around", "[", + RowBox[{ + RowBox[{"Mean", "[", "#", "]"}], ",", + RowBox[{ + RowBox[{"StandardDeviation", "[", "#", "]"}], "/", + SqrtBox[ + RowBox[{"Length", "[", "#", "]"}]]}]}], "]"}]}], "&"}], "/@", + RowBox[{"(", + RowBox[{ + RowBox[{"(", "mMax3", ")"}], "-", + RowBox[{"Abs", "@", + RowBox[{"{", + RowBox[{"testdat4", ",", "testdat5", ",", "testdat6"}], "}"}]}]}], + ")"}]}], ",", "x", ",", "x"}], "]"}]}]], "Input", + CellChangeTimes->{{3.933327411400568*^9, 3.933327427495914*^9}, { + 3.934454359966218*^9, 3.934454364454646*^9}, {3.934454611704898*^9, + 3.934454635096731*^9}, {3.934454768798436*^9, 3.934454777390574*^9}}, + CellLabel-> + "In[112]:=",ExpressionUUID->"04e6644b-90a9-4b4e-90ba-9f54a0b030a5"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{ + TagBox["FittedModel", + "SummaryHead"], "[", + DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + GridBox[{{ + TagBox[ + TagBox[ + RowBox[{ + RowBox[{"-", "2.247717606544234`"}], "-", + RowBox[{"0.7705261095304607`", " ", "x"}]}], Short], + "SummaryItem"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + GridBox[{{ + TagBox[ + TagBox[ + RowBox[{ + RowBox[{"-", "2.247717606544234`"}], "-", + RowBox[{"0.7705261095304607`", " ", "x"}]}], Short], + "SummaryItem"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + DynamicModuleValues:>{}], "]"}], + FittedModel[{ + "Linear", {-2.247717606544234, -0.7705261095304607}, {{$CellContext`x}, { + 1, $CellContext`x}}, {0, 0}}, {{1084.771154596802, 643.0181086516898, + 357.6368428977414}}, {{1, + Around[-3.034622703287792, 0.030362039146316223`]}, {2, + Around[-3.7335071428557325`, 0.03943559503265716]}, {3, + Around[-4.608976087567104, 0.05287846916328036]}}, {{1., 1.}, {1., 2.}, { + 1., 3.}}, + Function[Null, + Internal`LocalizedBlock[{$CellContext`x}, #], {HoldAll}]], + Editable->False, + SelectWithContents->True, + Selectable->False]], "Output", + CellChangeTimes->{{3.933327412574132*^9, 3.933327427660421*^9}, + 3.933327850915924*^9, 3.933328969107061*^9, 3.933329470293433*^9, + 3.93333351432743*^9, 3.933335009068445*^9, 3.933335164967711*^9, + 3.933349856582277*^9, 3.933350625068188*^9, 3.933350895936488*^9, + 3.93335093355758*^9, 3.93335103137745*^9, 3.933351224116168*^9, + 3.933378826130872*^9, 3.933380267337307*^9, 3.933381181970826*^9, + 3.933425779864909*^9, 3.933586908614459*^9, 3.933588305421236*^9, + 3.933589024137838*^9, 3.933656420063429*^9, 3.933674430401177*^9, + 3.93368420923544*^9, 3.933761801047251*^9, 3.933882093402763*^9, + 3.933882640581381*^9, 3.9344538110935163`*^9, {3.934454357232455*^9, + 3.934454364693713*^9}, {3.934454612038004*^9, 3.934454635426583*^9}, { + 3.934454742228858*^9, 3.934454777583322*^9}, 3.934455579287985*^9, + 3.934458330594358*^9, 3.934515570211307*^9, 3.934534400495366*^9, + 3.934535310079324*^9, 3.9345393326235657`*^9}, + CellLabel-> + "Out[112]=",ExpressionUUID->"fb5097ef-27b9-4507-a7ab-ed635f94e150"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Show", "[", + RowBox[{ + RowBox[{"ListLogPlot", "[", + RowBox[{ + RowBox[{ + RowBox[{"Around", "[", + RowBox[{ + RowBox[{"Mean", "[", "#", "]"}], ",", + RowBox[{ + RowBox[{"StandardDeviation", "[", "#", "]"}], "/", + SqrtBox[ + RowBox[{"Length", "[", "#", "]"}]]}]}], "]"}], "&"}], "/@", + RowBox[{"(", + RowBox[{ + RowBox[{"(", "mMax3", ")"}], "-", + RowBox[{"Abs", "@", + RowBox[{"{", + RowBox[{ + "testdat2", ",", "testdat3", ",", "testdat4", ",", "testdat5", ",", + "testdat6", ",", "testdat7", ",", "testdat8"}], "}"}]}]}], ")"}]}], + "]"}], ",", + RowBox[{"LogPlot", "[", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"fittest1", "[", + RowBox[{"x", "-", "2"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "0", ",", "8"}], "}"}]}], "]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.933314533504914*^9, 3.933314547784113*^9}, { + 3.933314583368849*^9, 3.933314697495349*^9}, {3.9333154350771503`*^9, + 3.933315435748162*^9}, {3.933327439342664*^9, 3.933327451409759*^9}, { + 3.9344543706401463`*^9, 3.934454371133278*^9}, {3.934454573592712*^9, + 3.934454575461878*^9}, {3.934454613671974*^9, 3.934454637733389*^9}, { + 3.934454771111467*^9, 3.934454774837607*^9}, {3.934454896709593*^9, + 3.934454918380809*^9}, {3.934539343761154*^9, 3.934539346897223*^9}}, + CellLabel-> + "In[114]:=",ExpressionUUID->"4f6ec33b-2722-4715-8283-2253119f6e1c"], + +Cell[BoxData[ + GraphicsBox[{{{{ + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{1., -1.3296827232633186`}, {1., -1.3099175632493198`}}], + LineBox[{{1., -1.3099175632493198`}, {1., -1.2905355049489804`}}]}}, + + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{2., -2.1796036346704266`}, {2., -2.152564471635376}}], + LineBox[{{2., -2.152564471635376}, {2., -2.126237217741179}}]}}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{3., -3.0654552166757956`}, {3., -3.034622703287792}}], + LineBox[{{3., -3.034622703287792}, {3., -3.0047124684890916`}}]}}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{4., -3.773741388293342}, {4., -3.7335071428557325`}}], + LineBox[{{4., -3.7335071428557325`}, {4., -3.694829274099797}}]}}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{5., -4.663303949140131}, {5., -4.608976087567104}}], + LineBox[{{5., -4.608976087567104}, {5., -4.557448274975981}}]}}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{6., -9.637790583091393}, {6., -7.613342993136609}}], + LineBox[{{6., -7.613342993136609}, {6., -6.988510402392843}}]}}, + Antialiasing->False]}, {}}, {}}, + InterpretationBox[{ + TagBox[ + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ + 0.012833333333333334`], AbsoluteThickness[2], + PointBox[{{1., -1.3099175632493198`}, {2., -2.152564471635376}, { + 3., -3.034622703287792}, {4., -3.7335071428557325`}, { + 5., -4.608976087567104}, {6., -7.613342993136609}}]}, + Annotation[#, "Charting`Private`Tag#1"]& ], + {"WolframDynamicHighlight", <| + "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], + StyleBox[ + DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, + Slot["HighlightElements"], + Slot["LayoutOptions"], + Slot["Meta"], + Charting`HighlightActionFunction["DynamicHighlight", {{ + Annotation[{ + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + + Point[{{1., -1.3099175632493198`}, {2., -2.152564471635376}, { + 3., -3.034622703287792}, {4., -3.7335071428557325`}, { + 5., -4.608976087567104}, {6., -7.613342993136609}}]}, + "Charting`Private`Tag#1"]}}, <| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{ + 0., 6}, {-10.291010663877904`, -1.2905355049489804`}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0., -10.291010663877904`}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), + "DefaultStyle" -> { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, {Log, Exp}}|>, + "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, + "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{ + 0., 6}, {-10.291010663877904`, -1.2905355049489804`}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0., -10.291010663877904`}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), + "DefaultStyle" -> { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, {Log, Exp}}|>, + "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + ListPlot, "GroupHighlight" -> False|>|>], + ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { + 4.503599627370496*^15, -4.503599627370496*^15}}], + Selectable->False]}, + Annotation[{{ + Annotation[{ + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + + Point[{{1., -1.3099175632493198`}, {2., -2.152564471635376}, { + 3., -3.034622703287792}, {4., -3.7335071428557325`}, { + 5., -4.608976087567104}, {6., -7.613342993136609}}]}, + "Charting`Private`Tag#1"]}}, <| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{ + 0., 6}, {-10.291010663877904`, -1.2905355049489804`}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0., -10.291010663877904`}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), + "DefaultStyle" -> { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, {Log, Exp}}|>, + "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + ListPlot, "GroupHighlight" -> False|>|>, + "DynamicHighlight"]], {{}, {}}}, + InterpretationBox[{ + TagBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2], + Opacity[1.], LineBox[CompressedData[" +1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAASmXo0cDphT7mb5j+AJ3mvwRDGnDf +GWQ/9jSSwn2s5r8zn5icsxl0PwT6i4b6u+a/S83Xsp0ZhD8khH8O9Nrmv1dk +972SGZQ/YJhmHucY57/dL4dDjRmkP9rAND7NlOe/oBVPhooZtD/QEdF9mYzo +v4EIsyeJGcQ/urMJ/TF86r9YWaGv8PHUP14ugqPCru6/C/+BXEce3z/Xq6fQ +Dk3xvyVR7ujDi+Q/hK6rCOU48793zjk/mPTpP5pMsxRrTvW/F7QR3gEB7z8G +QmVMVkD3v7biQ8zPPPI/2tIaWPFb+b/Cap0bWez0P7TR7Ry1bfu/9SY9D61t +9z/iJ2sN3lv9vwL5qxAbJfo/eRns0bZz/782/2C2U678PzOxC2H6swDAzIQ0 +zsYq/z+sDLC1LakBwB+Q6/mp7gBA2jVW9DizAsDr99/e1TACQLKK0ch2qwPA +pOq7yg6OA0A/rU6HjLgEwA4dp+/k5ARAz4ZaorbABcCMabVmoCQGQAmMO1MT +twbA9kCr5Gh/B0D4Xh7uR8IHwHQyxLQWwwhAkF3WHq+7CMDfrsSL0SEKQN4p +kDnuyQnA+2rUmyl6C0AurdiwQdMKwCtBB/5muwxAKlz2vcfKC8BHoiFnsRcO +QNjYFbUl1wzAdx1fIuFcD0AygQpCttENwCzsVQvXTRBAjuCNK1vHDsATD/AI +xPoQQKANE//X0Q/ABL+bryOcEUAusza0Q2UQwGs0u9kJSxJAZsbkXQfsEMCr +SWKgvvYSQB812jVVcBHA9esaEOaWE0CuObpYvOsRwLVTRwOURBRAFyWbcI9x +EsB/SIWftOYUQFWmZtN77hLAId1K2KOFFUAUg3lk8mgTwDo3hJQZMhZArkaN +6tTtE8BcHs/5AdMWQB2gi7vQaRTA9cqN4nCBF0Bm4IqBOPAUwJgEXnRSJBhA +hLZ0krltFcAT3rWiAsQYQCTopdHE6BXABX2BVDlxGUCeANgFPG4WwACpXq/i +EhpA7q70hMzqFsBymq+NEsIaQBdEEvnIcRfAvSuICBFuG0DCNHebT/YXwBFK +ciyCDhxAQrvGiO9xGMDcLdDTebwcQJ0oF2v79xjAsJ4/JOReHUDMK1KYIHUZ +wF2vNhEd/h1AfYrU88/vGcCAhaGB3KoeQAjQV0TrdBrAregdmw5MH0Boq8Xf +H/EawIidhWDeTh9A+en+eUrzGsBkUu0lrlEfQIsoOBR19RrAHLy8sE1XH0Cu +papIyvkawIqPW8aMYh9A85+PsXQCG8BoNpnxCnkfQH6UWYPJExvAIoQUSAem +H0CTfe0mczYbwP44fA3XqB9AJbwmwZ04G8DZ7ePSpqsfQLb6X1vIOhvAkFez +XUaxH0DYd9KPHT8bwP8qUnOFvB9AHnK3+MdHG8Dc0Y+eA9MfQKhmgcocWRvA +uIb3Y9PVH0A6pbpkR1sbwJQ7Xymj2B9AzOPz/nFdG8BLpS60Qt4fQO5gZjPH +YRvAunjNyYHpH0A0W0uccWobwJYtNY9R7B9AxZmENpxsG8Bx4pxUIe8fQFbY +vdDGbhvAKExs38D0H0B5VTAFHHMbwAQB1KSQ9x9ACpRpn0Z1G8DgtTtqYPof +QJzSojlxdxvAvGqjLzD9H0AtEdzTm3kbwJcfC/X//x9Avk8VbsZ7G8DALVW7 + + "]]}, + Annotation[#, "Charting`Private`Tag#1"]& ]}, {}}, + {"WolframDynamicHighlight", <| + "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], + StyleBox[ + DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, + Slot["HighlightElements"], + Slot["LayoutOptions"], + Slot["Meta"], + Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + Line[CompressedData[" +1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAASmXo0cDphT7mb5j+AJ3mvwRDGnDf +GWQ/9jSSwn2s5r8zn5icsxl0PwT6i4b6u+a/S83Xsp0ZhD8khH8O9Nrmv1dk +972SGZQ/YJhmHucY57/dL4dDjRmkP9rAND7NlOe/oBVPhooZtD/QEdF9mYzo +v4EIsyeJGcQ/urMJ/TF86r9YWaGv8PHUP14ugqPCru6/C/+BXEce3z/Xq6fQ +Dk3xvyVR7ujDi+Q/hK6rCOU48793zjk/mPTpP5pMsxRrTvW/F7QR3gEB7z8G +QmVMVkD3v7biQ8zPPPI/2tIaWPFb+b/Cap0bWez0P7TR7Ry1bfu/9SY9D61t +9z/iJ2sN3lv9vwL5qxAbJfo/eRns0bZz/782/2C2U678PzOxC2H6swDAzIQ0 +zsYq/z+sDLC1LakBwB+Q6/mp7gBA2jVW9DizAsDr99/e1TACQLKK0ch2qwPA +pOq7yg6OA0A/rU6HjLgEwA4dp+/k5ARAz4ZaorbABcCMabVmoCQGQAmMO1MT +twbA9kCr5Gh/B0D4Xh7uR8IHwHQyxLQWwwhAkF3WHq+7CMDfrsSL0SEKQN4p +kDnuyQnA+2rUmyl6C0AurdiwQdMKwCtBB/5muwxAKlz2vcfKC8BHoiFnsRcO +QNjYFbUl1wzAdx1fIuFcD0AygQpCttENwCzsVQvXTRBAjuCNK1vHDsATD/AI +xPoQQKANE//X0Q/ABL+bryOcEUAusza0Q2UQwGs0u9kJSxJAZsbkXQfsEMCr +SWKgvvYSQB812jVVcBHA9esaEOaWE0CuObpYvOsRwLVTRwOURBRAFyWbcI9x +EsB/SIWftOYUQFWmZtN77hLAId1K2KOFFUAUg3lk8mgTwDo3hJQZMhZArkaN +6tTtE8BcHs/5AdMWQB2gi7vQaRTA9cqN4nCBF0Bm4IqBOPAUwJgEXnRSJBhA +hLZ0krltFcAT3rWiAsQYQCTopdHE6BXABX2BVDlxGUCeANgFPG4WwACpXq/i +EhpA7q70hMzqFsBymq+NEsIaQBdEEvnIcRfAvSuICBFuG0DCNHebT/YXwBFK +ciyCDhxAQrvGiO9xGMDcLdDTebwcQJ0oF2v79xjAsJ4/JOReHUDMK1KYIHUZ +wF2vNhEd/h1AfYrU88/vGcCAhaGB3KoeQAjQV0TrdBrAregdmw5MH0Boq8Xf +H/EawIidhWDeTh9A+en+eUrzGsBkUu0lrlEfQIsoOBR19RrAHLy8sE1XH0Cu +papIyvkawIqPW8aMYh9A85+PsXQCG8BoNpnxCnkfQH6UWYPJExvAIoQUSAem +H0CTfe0mczYbwP44fA3XqB9AJbwmwZ04G8DZ7ePSpqsfQLb6X1vIOhvAkFez +XUaxH0DYd9KPHT8bwP8qUnOFvB9AHnK3+MdHG8Dc0Y+eA9MfQKhmgcocWRvA +uIb3Y9PVH0A6pbpkR1sbwJQ7Xymj2B9AzOPz/nFdG8BLpS60Qt4fQO5gZjPH +YRvAunjNyYHpH0A0W0uccWobwJYtNY9R7B9AxZmENpxsG8Bx4pxUIe8fQFbY +vdDGbhvAKExs38D0H0B5VTAFHHMbwAQB1KSQ9x9ACpRpn0Z1G8DgtTtqYPof +QJzSojlxdxvAvGqjLzD9H0AtEdzTm3kbwJcfC/X//x9Avk8VbsZ7G8DALVW7 + + "]]}, "Charting`Private`Tag#1"]}}, {}}, <| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0, 8}, {-6.870874137926817, 0.}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0, -7.252589367811624}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), + "DefaultStyle" -> { + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, {Log, Exp}}|>, + "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + Plot, "GroupHighlight" -> False|>|>]]& )[<| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0, 8}, {-6.870874137926817, 0.}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0, -7.252589367811624}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), + "DefaultStyle" -> { + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, {Log, Exp}}|>, + "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + Plot, "GroupHighlight" -> False|>|>], + ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { + 4.503599627370496*^15, -4.503599627370496*^15}}], + Selectable->False]}, + Annotation[{{{{}, {}, + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + Line[CompressedData[" +1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAASmXo0cDphT7mb5j+AJ3mvwRDGnDf +GWQ/9jSSwn2s5r8zn5icsxl0PwT6i4b6u+a/S83Xsp0ZhD8khH8O9Nrmv1dk +972SGZQ/YJhmHucY57/dL4dDjRmkP9rAND7NlOe/oBVPhooZtD/QEdF9mYzo +v4EIsyeJGcQ/urMJ/TF86r9YWaGv8PHUP14ugqPCru6/C/+BXEce3z/Xq6fQ +Dk3xvyVR7ujDi+Q/hK6rCOU48793zjk/mPTpP5pMsxRrTvW/F7QR3gEB7z8G +QmVMVkD3v7biQ8zPPPI/2tIaWPFb+b/Cap0bWez0P7TR7Ry1bfu/9SY9D61t +9z/iJ2sN3lv9vwL5qxAbJfo/eRns0bZz/782/2C2U678PzOxC2H6swDAzIQ0 +zsYq/z+sDLC1LakBwB+Q6/mp7gBA2jVW9DizAsDr99/e1TACQLKK0ch2qwPA +pOq7yg6OA0A/rU6HjLgEwA4dp+/k5ARAz4ZaorbABcCMabVmoCQGQAmMO1MT +twbA9kCr5Gh/B0D4Xh7uR8IHwHQyxLQWwwhAkF3WHq+7CMDfrsSL0SEKQN4p +kDnuyQnA+2rUmyl6C0AurdiwQdMKwCtBB/5muwxAKlz2vcfKC8BHoiFnsRcO +QNjYFbUl1wzAdx1fIuFcD0AygQpCttENwCzsVQvXTRBAjuCNK1vHDsATD/AI +xPoQQKANE//X0Q/ABL+bryOcEUAusza0Q2UQwGs0u9kJSxJAZsbkXQfsEMCr +SWKgvvYSQB812jVVcBHA9esaEOaWE0CuObpYvOsRwLVTRwOURBRAFyWbcI9x +EsB/SIWftOYUQFWmZtN77hLAId1K2KOFFUAUg3lk8mgTwDo3hJQZMhZArkaN +6tTtE8BcHs/5AdMWQB2gi7vQaRTA9cqN4nCBF0Bm4IqBOPAUwJgEXnRSJBhA +hLZ0krltFcAT3rWiAsQYQCTopdHE6BXABX2BVDlxGUCeANgFPG4WwACpXq/i +EhpA7q70hMzqFsBymq+NEsIaQBdEEvnIcRfAvSuICBFuG0DCNHebT/YXwBFK +ciyCDhxAQrvGiO9xGMDcLdDTebwcQJ0oF2v79xjAsJ4/JOReHUDMK1KYIHUZ +wF2vNhEd/h1AfYrU88/vGcCAhaGB3KoeQAjQV0TrdBrAregdmw5MH0Boq8Xf +H/EawIidhWDeTh9A+en+eUrzGsBkUu0lrlEfQIsoOBR19RrAHLy8sE1XH0Cu +papIyvkawIqPW8aMYh9A85+PsXQCG8BoNpnxCnkfQH6UWYPJExvAIoQUSAem +H0CTfe0mczYbwP44fA3XqB9AJbwmwZ04G8DZ7ePSpqsfQLb6X1vIOhvAkFez +XUaxH0DYd9KPHT8bwP8qUnOFvB9AHnK3+MdHG8Dc0Y+eA9MfQKhmgcocWRvA +uIb3Y9PVH0A6pbpkR1sbwJQ7Xymj2B9AzOPz/nFdG8BLpS60Qt4fQO5gZjPH +YRvAunjNyYHpH0A0W0uccWobwJYtNY9R7B9AxZmENpxsG8Bx4pxUIe8fQFbY +vdDGbhvAKExs38D0H0B5VTAFHHMbwAQB1KSQ9x9ACpRpn0Z1G8DgtTtqYPof +QJzSojlxdxvAvGqjLzD9H0AtEdzTm3kbwJcfC/X//x9Avk8VbsZ7G8DALVW7 + + "]]}, "Charting`Private`Tag#1"]}}, {}}, <| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0, 8}, {-6.870874137926817, 0.}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0, -7.252589367811624}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, {Log, Exp}}|>, + "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]]}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0., -10.291010663877904`}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{ + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + 15.954589770191003`, RotateLabel -> 0], + Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + Method->{ + "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "DefaultPlotStyle" -> { + Directive[ + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.528488, 0.470624, 0.701351], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.772079, 0.431554, 0.102387], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.363898, 0.618501, 0.782349], + AbsoluteThickness[2]], + Directive[ + RGBColor[1, 0.75, 0], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.647624, 0.37816, 0.614037], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.571589, 0.586483, 0.], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.915, 0.3325, 0.2125], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.736782672705901, 0.358, 0.5030266573755369], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], + AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], + "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], + "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", + "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& )}}, + PlotRange->{{0., 6}, {-10.291010663877904`, -1.2905355049489804`}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, + Ticks->FrontEndValueCache[{Automatic, + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + 15.954589770191003`, RotateLabel -> 0]}, { + Automatic, {{-9.210340371976182, + FormBox[ + TemplateBox[{"10", + RowBox[{"-", "4"}]}, "Superscript", SyntaxForm -> SuperscriptBox], + TraditionalForm], {0.01, 0.}}, {-6.907755278982137, + FormBox["0.001`", TraditionalForm], {0.01, 0.}}, {-4.605170185988091, + FormBox[ + TagBox[ + InterpretationBox[ + StyleBox["\"0.010\"", ShowStringCharacters -> False], + 0.01`15.954589770191003, AutoDelete -> True], NumberForm[#, { + DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, + 0.}}, {-2.3025850929940455`, + FormBox[ + TagBox[ + InterpretationBox[ + StyleBox["\"0.100\"", ShowStringCharacters -> False], + 0.1`15.954589770191003, AutoDelete -> True], NumberForm[#, { + DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, + 0.}}, {-13.815510557964274`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-13.122363377404328`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-12.716898269296165`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-12.429216196844383`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-12.206072645530174`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-12.02375108873622, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-11.86960040890896, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-11.736069016284437`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-11.618285980628055`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-11.512925464970229`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-10.819778284410283`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-10.41431317630212, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-10.126631103850338`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-9.903487552536127, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-9.721165995742174, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-9.567015315914915, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-9.433483923290392, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-9.315700887634009, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-8.517193191416238, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-8.111728083308073, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-7.824046010856292, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-7.600902459542082, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-7.418580902748128, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-7.264430222920869, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-7.1308988302963465`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-7.013115794639964, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-6.214608098422191, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-5.809142990314028, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-5.521460917862246, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-5.298317366548036, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-5.115995809754082, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-4.961845129926823, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-4.8283137373023015`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-4.710530701645918, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-3.912023005428146, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-3.506557897319982, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-3.2188758248682006`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-2.995732273553991, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-2.8134107167600364`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-2.659260036932778, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-2.5257286443082556`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-2.4079456086518722`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-1.6094379124341003`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-1.2039728043259361`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.916290731874155, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.6931471805599453, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.5108256237659907, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.35667494393873245`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.2231435513142097, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.10536051565782628`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {0., + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}}}]]], "Output", + CellChangeTimes->{ + 3.933314548051053*^9, {3.933314592678224*^9, 3.9333145951242037`*^9}, { + 3.9333146399681273`*^9, 3.933314697725526*^9}, 3.933315047818658*^9, + 3.933315119465296*^9, 3.93331522762116*^9, {3.933315421251523*^9, + 3.933315436014288*^9}, 3.933315572410055*^9, 3.933315623245983*^9, + 3.933315787632036*^9, 3.9333183217987947`*^9, {3.933319883931234*^9, + 3.933319911375183*^9}, 3.933320858660698*^9, 3.933322927468836*^9, + 3.933323190040077*^9, 3.93332330087798*^9, 3.933323354897191*^9, + 3.933323786511548*^9, 3.933323875765297*^9, 3.933323933304946*^9, + 3.933323996072947*^9, 3.933324086098012*^9, {3.933324268186767*^9, + 3.93332429294595*^9}, 3.933325262547035*^9, 3.933325928134894*^9, + 3.933326182751448*^9, 3.933327374823097*^9, {3.933327448175918*^9, + 3.933327451744962*^9}, 3.933327851739109*^9, 3.933328970175115*^9, + 3.933329471130218*^9, 3.9333335153167686`*^9, 3.9333350098228073`*^9, + 3.933335165921948*^9, 3.933349857607873*^9, 3.933350625827676*^9, + 3.93335089668617*^9, 3.933350934588551*^9, 3.933351032266108*^9, + 3.933351225111496*^9, 3.933378827109551*^9, 3.933380268361484*^9, + 3.933381182697356*^9, 3.933425780166501*^9, 3.933586595745242*^9, + 3.933586909799162*^9, 3.933588306105925*^9, 3.933589025152458*^9, + 3.9336564205860977`*^9, 3.93367443084011*^9, 3.933684210270096*^9, + 3.933761801956904*^9, 3.933882093994439*^9, 3.933882641496805*^9, + 3.934453811830559*^9, {3.934454366984423*^9, 3.934454371366502*^9}, + 3.934454575906486*^9, {3.934454613974022*^9, 3.934454637964063*^9}, { + 3.934454742917922*^9, 3.934454778854512*^9}, {3.934454904811509*^9, + 3.934454918621932*^9}, 3.934455580311879*^9, 3.934458331404948*^9, + 3.934515571386568*^9, 3.934535311076537*^9, {3.934539338569912*^9, + 3.934539347348751*^9}}, + CellLabel-> + "Out[114]=",ExpressionUUID->"5be51ba2-190b-4fa2-8bc7-810e619b8875"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"fittest", "=", + RowBox[{"LinearModelFit", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Log", "@", + RowBox[{"Around", "[", + RowBox[{ + RowBox[{"Mean", "[", "#", "]"}], ",", + RowBox[{ + RowBox[{"StandardDeviation", "[", "#", "]"}], "/", + SqrtBox[ + RowBox[{"Length", "[", "#", "]"}]]}]}], "]"}]}], "&"}], "/@", + RowBox[{"(", + RowBox[{"mMax1", "-", + RowBox[{"Abs", "@", + RowBox[{"{", + RowBox[{ + "testdat5", ",", "testdat6", ",", "testdat7", ",", "testdat8"}], + "}"}]}]}], ")"}]}], ",", "x", ",", "x"}], "]"}]}]], "Input", + CellChangeTimes->{{3.933319939167344*^9, 3.933319962062771*^9}, { + 3.933732473373189*^9, 3.933732474553158*^9}, {3.934454791353747*^9, + 3.93445479184977*^9}, 3.9345393542247753`*^9}, + CellLabel-> + "In[115]:=",ExpressionUUID->"c699da20-b8e1-4d8d-b830-d061605f160c"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{ + TagBox["FittedModel", + "SummaryHead"], "[", + DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + GridBox[{{ + TagBox[ + TagBox[ + RowBox[{ + RowBox[{"-", "2.8231044185371497`"}], "-", + RowBox[{"0.5154686990296912`", " ", "x"}]}], Short], + "SummaryItem"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + GridBox[{{ + TagBox[ + TagBox[ + RowBox[{ + RowBox[{"-", "2.8231044185371497`"}], "-", + RowBox[{"0.5154686990296912`", " ", "x"}]}], Short], + "SummaryItem"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + DynamicModuleValues:>{}], "]"}], + FittedModel[{ + "Linear", {-2.8231044185371497`, -0.5154686990296912}, {{$CellContext`x}, { + 1, $CellContext`x}}, {0, 0}}, {{1412.6878464872914`, 1664.4504186974987`, + 786.9041509558895, 53.638216493825176`}}, {{1, + Around[-3.3399688647329566`, 0.026605835131095847`]}, {2, + Around[-3.8401099861489447`, 0.02451119971810141]}, {3, + Around[-4.420930268361347, 0.03564832116770754]}, {4, + Around[-4.526180355129271, 0.1365409234012372]}}, {{1., 1.}, {1., 2.}, { + 1., 3.}, {1., 4.}}, + Function[Null, + Internal`LocalizedBlock[{$CellContext`x}, #], {HoldAll}]], + Editable->False, + SelectWithContents->True, + Selectable->False]], "Output", + CellChangeTimes->{{3.933319951306982*^9, 3.933319962371007*^9}, + 3.933320861414138*^9, 3.933322929540431*^9, 3.933323192459327*^9, + 3.933323306692953*^9, 3.933323357047616*^9, 3.933323789202457*^9, + 3.933323878042815*^9, 3.9333239356598587`*^9, 3.933323999550365*^9, + 3.93332408810582*^9, {3.933324270666937*^9, 3.933324294558112*^9}, + 3.933325264602014*^9, 3.933325930887089*^9, 3.933326184581078*^9, + 3.933327379319022*^9, 3.933327853798491*^9, 3.933328975457896*^9, + 3.933329473156392*^9, 3.933333518507026*^9, 3.933335011869015*^9, + 3.933335167688498*^9, 3.933338887176316*^9, 3.933349860136321*^9, + 3.933350627488044*^9, 3.933350901559125*^9, 3.9333509372031317`*^9, + 3.933351035243598*^9, 3.93335122684774*^9, 3.933378830069906*^9, + 3.933380271962384*^9, 3.933381184562094*^9, 3.933425780420783*^9, + 3.9335866011748047`*^9, 3.93358695674737*^9, 3.933588308512599*^9, + 3.933589027260793*^9, 3.933656442552443*^9, 3.933656921977204*^9, + 3.933674432510911*^9, {3.9336842156591597`*^9, 3.9336842438181148`*^9}, + 3.93373247515973*^9, 3.933761803421789*^9, 3.93388209467387*^9, + 3.93388264334674*^9, 3.934453826397777*^9, 3.934454496761171*^9, + 3.934454792117689*^9, 3.934455581786953*^9, 3.934458332273429*^9, + 3.9345155741595078`*^9, 3.9345344031359*^9, 3.9345353119237757`*^9, + 3.9345393548221207`*^9}, + CellLabel-> + "Out[115]=",ExpressionUUID->"ed5e4ad1-67a3-4c9b-a847-6f8e34d62b0a"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"Around", "[", + RowBox[{ + RowBox[{"Mean", "[", "#", "]"}], ",", + RowBox[{ + RowBox[{"StandardDeviation", "[", "#", "]"}], "/", + SqrtBox[ + RowBox[{"Length", "[", "#", "]"}]]}]}], "]"}], "&"}], "/@", + RowBox[{"(", + RowBox[{"mMax1", "-", + RowBox[{"Abs", "@", + RowBox[{"{", + RowBox[{ + "testdat2", ",", "testdat3", ",", "testdat4", ",", "testdat5", ",", + "testdat6", ",", "testdat7", ",", "testdat8"}], "}"}]}]}], + ")"}]}]], "Input", + CellChangeTimes->{{3.9345393573682117`*^9, 3.9345393592962923`*^9}}, + CellLabel-> + "In[116]:=",ExpressionUUID->"a50d66f9-04d2-4491-ae90-63cb096c85d3"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + InterpretationBox[ + TemplateBox[{"0.281", "0.005"}, + "Around"], + Around[0.2813715245500513, 0.005281113294889822]], ",", + InterpretationBox[ + TemplateBox[{"0.1277", "0.0031"}, + "Around"], + Around[0.12771504431739333`, 0.0030994748927022095`]], ",", + InterpretationBox[ + TemplateBox[{"0.0596", "0.0015"}, + "Around"], + Around[0.059622028869849214`, 0.0014601956192627002`]], ",", + InterpretationBox[ + TemplateBox[{"0.0354", "0.0009"}, + "Around"], + Around[0.035438061077917055`, 0.0009428592104047659]], ",", + InterpretationBox[ + TemplateBox[{"0.0215", "0.0005"}, + "Around"], + Around[0.0214912374766498, 0.000526776013979309]], ",", + InterpretationBox[ + TemplateBox[{"0.0120", "0.0004"}, + "Around"], + Around[0.012023042424769512`, 0.0004286012777711568]], ",", + InterpretationBox[ + TemplateBox[{"0.0108", "0.0015"}, + "Around"], + Around[0.010821933170377348`, 0.0014776367480698013`]]}], "}"}]], "Output",\ + + CellChangeTimes->{3.934455765670926*^9, 3.934458333336471*^9, + 3.934515574888485*^9, 3.934534403844996*^9, 3.9345353124851313`*^9, + 3.9345393595288467`*^9}, + CellLabel-> + "Out[116]=",ExpressionUUID->"5497b13c-df4a-4ed3-b151-89ef7aae2f89"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Show", "[", + RowBox[{ + RowBox[{"ListLogPlot", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Around", "[", + RowBox[{ + RowBox[{"Mean", "[", "#", "]"}], ",", + RowBox[{ + RowBox[{"StandardDeviation", "[", "#", "]"}], "/", + SqrtBox[ + RowBox[{"Length", "[", "#", "]"}]]}]}], "]"}], "&"}], "/@", + RowBox[{"(", + RowBox[{"mMax1", "-", + RowBox[{"Abs", "@", + RowBox[{"{", + RowBox[{ + "testdat2", ",", "testdat3", ",", "testdat4", ",", "testdat5", ",", + "testdat6", ",", "testdat7", ",", "testdat8"}], "}"}]}]}], ")"}]}], + ",", + RowBox[{"Epilog", "->", + RowBox[{"{", + RowBox[{ + RowBox[{"Line", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"Log", "[", + RowBox[{"mMax1", "-", + RowBox[{"(", "mMax2", ")"}]}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"100", ",", + RowBox[{"Log", "[", + RowBox[{ + RowBox[{"(", "mMax1", ")"}], "-", + RowBox[{"(", "mMax2", ")"}]}], "]"}]}], "}"}]}], "}"}], "]"}], + ",", + RowBox[{"{", + RowBox[{"Dashed", ",", + RowBox[{"Line", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"Log", "[", + RowBox[{ + RowBox[{"(", "mMax1", ")"}], "-", + RowBox[{"(", "mMax3", ")"}]}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"100", ",", + RowBox[{"Log", "[", + RowBox[{ + RowBox[{"(", "mMax1", ")"}], "-", + RowBox[{"(", "mMax3", ")"}]}], "]"}]}], "}"}]}], "}"}], + "]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", + RowBox[{"LogPlot", "[", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"fittest", "[", + RowBox[{"x", "-", "3"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.933314557355091*^9, 3.933314574322883*^9}, + 3.9333147305880003`*^9, {3.9333147748572*^9, 3.933314775720537*^9}, { + 3.933315439749201*^9, 3.933315543952949*^9}, {3.933319967999023*^9, + 3.933320003152988*^9}, {3.9333200643564*^9, 3.933320068899357*^9}, { + 3.933732478934451*^9, 3.933732480385178*^9}, {3.934453916825952*^9, + 3.934453934830053*^9}, {3.934454501670981*^9, 3.934454539789284*^9}, { + 3.9344547995126038`*^9, 3.934454812376872*^9}, {3.934454845081508*^9, + 3.934454878449999*^9}, {3.934539368904941*^9, 3.9345393780734262`*^9}}, + CellLabel-> + "In[119]:=",ExpressionUUID->"e5d2c2e9-65d2-42b6-87d6-57bf360d129a"], + +Cell[BoxData[ + GraphicsBox[{{{{ + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{1., -1.2870268898951676`}, {1., -1.2680793314972671`}}], + LineBox[{{1., -1.2680793314972671`}, {1., -1.2494841173503894`}}]}}, + + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{2., -2.082521725180699}, {2., -2.0579537130362153`}}], + LineBox[{{2., -2.0579537130362153`}, {2., -2.033974842984144}}]}}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{3., -2.8445259254388824`}, {3., -2.8197301612902668`}}], + LineBox[{{3., -2.8197301612902668`}, {3., -2.7955343800232284`}}]}}, + + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{4., -3.3669350409208203`}, {4., -3.3399688647329566`}}], + LineBox[{{4., -3.3399688647329566`}, {4., -3.3137108096667083`}}]}}, + + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{5., -3.86492658613649}, {5., -3.8401099861489447`}}], + LineBox[{{5., -3.8401099861489447`}, {5., -3.815894365625007}}]}}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{6., -4.457229507193987}, {6., -4.420930268361347}}], + LineBox[{{6., -4.420930268361347}, {6., -4.385902640485406}}]}}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{7., -4.672989130121662}, {7., -4.526180355129271}}], + LineBox[{{7., -4.526180355129271}, {7., -4.398190983194996}}]}}, + Antialiasing->False]}}, { + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{ + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{1., -1.2494841173503894`}, + Offset[{3, 0}, {1., -1.2494841173503894`}]}, {{ + 1., -1.2494841173503894`}, + Offset[{-3, 0}, {1., -1.2494841173503894`}]}, {{ + 1., -1.2870268898951676`}, + Offset[{3, 0}, {1., -1.2870268898951676`}]}, {{ + 1., -1.2870268898951676`}, + Offset[{-3, 0}, {1., -1.2870268898951676`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{ + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{2., -2.033974842984144}, + Offset[{3, 0}, {2., -2.033974842984144}]}, {{ + 2., -2.033974842984144}, + Offset[{-3, 0}, {2., -2.033974842984144}]}, {{ + 2., -2.082521725180699}, + Offset[{3, 0}, {2., -2.082521725180699}]}, {{ + 2., -2.082521725180699}, + Offset[{-3, 0}, {2., -2.082521725180699}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{ + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{3., -2.7955343800232284`}, + Offset[{3, 0}, {3., -2.7955343800232284`}]}, {{ + 3., -2.7955343800232284`}, + Offset[{-3, 0}, {3., -2.7955343800232284`}]}, {{ + 3., -2.8445259254388824`}, + Offset[{3, 0}, {3., -2.8445259254388824`}]}, {{ + 3., -2.8445259254388824`}, + Offset[{-3, 0}, {3., -2.8445259254388824`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{ + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{4., -3.3137108096667083`}, + Offset[{3, 0}, {4., -3.3137108096667083`}]}, {{ + 4., -3.3137108096667083`}, + Offset[{-3, 0}, {4., -3.3137108096667083`}]}, {{ + 4., -3.3669350409208203`}, + Offset[{3, 0}, {4., -3.3669350409208203`}]}, {{ + 4., -3.3669350409208203`}, + Offset[{-3, 0}, {4., -3.3669350409208203`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{ + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{5., -3.815894365625007}, + Offset[{3, 0}, {5., -3.815894365625007}]}, {{ + 5., -3.815894365625007}, + Offset[{-3, 0}, {5., -3.815894365625007}]}, {{ + 5., -3.86492658613649}, + Offset[{3, 0}, {5., -3.86492658613649}]}, {{ + 5., -3.86492658613649}, + Offset[{-3, 0}, {5., -3.86492658613649}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{ + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{6., -4.385902640485406}, + Offset[{3, 0}, {6., -4.385902640485406}]}, {{ + 6., -4.385902640485406}, + Offset[{-3, 0}, {6., -4.385902640485406}]}, {{ + 6., -4.457229507193987}, + Offset[{3, 0}, {6., -4.457229507193987}]}, {{ + 6., -4.457229507193987}, + Offset[{-3, 0}, {6., -4.457229507193987}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{ + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{7., -4.398190983194996}, + Offset[{3, 0}, {7., -4.398190983194996}]}, {{ + 7., -4.398190983194996}, + Offset[{-3, 0}, {7., -4.398190983194996}]}, {{ + 7., -4.672989130121662}, + Offset[{3, 0}, {7., -4.672989130121662}]}, {{ + 7., -4.672989130121662}, + Offset[{-3, 0}, {7., -4.672989130121662}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, + Antialiasing->False]}}}, + InterpretationBox[{ + TagBox[ + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ + 0.012833333333333334`], AbsoluteThickness[2], + PointBox[{{1., -1.2680793314972671`}, {2., -2.0579537130362153`}, { + 3., -2.8197301612902668`}, {4., -3.3399688647329566`}, { + 5., -3.8401099861489447`}, {6., -4.420930268361347}, { + 7., -4.526180355129271}}]}, + Annotation[#, "Charting`Private`Tag#1"]& ], + {"WolframDynamicHighlight", <| + "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], + StyleBox[ + DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, + Slot["HighlightElements"], + Slot["LayoutOptions"], + Slot["Meta"], + Charting`HighlightActionFunction["DynamicHighlight", {{ + Annotation[{ + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + + Point[{{1., -1.2680793314972671`}, {2., -2.0579537130362153`}, { + 3., -2.8197301612902668`}, {4., -3.3399688647329566`}, { + 5., -3.8401099861489447`}, {6., -4.420930268361347}, { + 7., -4.526180355129271}}]}, "Charting`Private`Tag#1"]}}, <| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0., + 7.}, {-4.940897825864207, -1.2494841173503894`}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0., -4.940897825864207}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), + "DefaultStyle" -> { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, {Log, Exp}}|>, + "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, + "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0., + 7.}, {-4.940897825864207, -1.2494841173503894`}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0., -4.940897825864207}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), + "DefaultStyle" -> { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, {Log, Exp}}|>, + "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + ListPlot, "GroupHighlight" -> False|>|>], + ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { + 4.503599627370496*^15, -4.503599627370496*^15}}], + Selectable->False]}, + Annotation[{{ + Annotation[{ + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + + Point[{{1., -1.2680793314972671`}, {2., -2.0579537130362153`}, { + 3., -2.8197301612902668`}, {4., -3.3399688647329566`}, { + 5., -3.8401099861489447`}, {6., -4.420930268361347}, { + 7., -4.526180355129271}}]}, "Charting`Private`Tag#1"]}}, <| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0., + 7.}, {-4.940897825864207, -1.2494841173503894`}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0., -4.940897825864207}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), + "DefaultStyle" -> { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, {Log, Exp}}|>, + "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + ListPlot, "GroupHighlight" -> False|>|>, + "DynamicHighlight"]], {{}, {}}}, + InterpretationBox[{ + TagBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2], + Opacity[1.], LineBox[CompressedData[" +1:eJwVxXk4lAkcAOCxzmaQcTVfmjF8lty6nk2H7+foKVfPYqSIcitHrtnKUVJI +xU6yjSPNonNlUqtDG/NLSs4I7S4qDymKVTEyjuzuH+/zGgQd8Az9jkajuf/n +/0uOBCmtCjltd+4Jj+cXPSVp6OK6+XD3Uf6fRtR6EqYki0/rjnO5hyljvdTG +7UlTkhLM0VfkZlM1sZc3OGRNSaI286O/6hdSr/WmuaalU5KuuYj8T/rXqZXx +wvHp7imJct+gybh+DVXL6c3M2ySVlDaL4j7qN1EjB/fUNDGmJeKb2X1RVr3U +O/b5tdptXyXhVGfhWPwQlbrKp7ggViaJGTYdqhaPUv5vLD0GGXMSusEJkzfr +P1Hv0mzYKs3zklyNFrPSvZPUEkFtd/j+b5KgPp5EvnWainTe2NmpS8O4JyeC +DpjMUtPCsj2eUzS8FavqxXJeoNzZz4cm6uWwNDnyg40PDZIuMBPmyr7DdNG8 +x9SYHCR4EjNkojzSugbgYZI8CHoqjKztFdA4MewQz0wRjnvydl/TV8S3UuEO +Rq0S2CvVZ9tNKKLL8P7UvDgV6Pl9S71DhxJufysw53DokGPFKzOtVMYPj4PS +nlUyQHPA5JBlsgpaMV+yHfeoQeRp5i6R7xKkU9LA/kl1OBuN1lbmdNw67vvV +0FsDzjhnMM3VGPhXfYicrwUTKr50F9E/MvDOyYYArpQJwhejhPIDVQxT5A+0 +t2vCzhval+KK1DA4PvmOapEWDD9UMJJFqqN1uHm7W6A2CIuOugbbLsXnmhYM +vq0OLLVVkbBVNfAPcXqxhbwurIc1XqxEDUyWM/ux9ZUuuDmNjjW91UB6f9K2 +mOplMCkO6Y3yYuLwFYN8UQoLFqvrHS4+YGL+SkKhxpuA6XsVVZlmmigoCmsM +5C4H3o6DhQt5muib79+u+n45OPmpvAyVaeKM02WZqE4POP5GrIwILRwadjhU +n7UCAmYNe1Z3aGHZ5lV6bYFsOJV/QygEbazM4DPDLTmwvJnVc+q6NmZ5B7vK +SzlgF+YSdkBDB9f1l17PatMHt0WlBXqaDhaYFle2uXKhfs0V9XUjOngUcwpc +a7jADe34XneXLrrreV9uNjIAjQWJYKRRF+1jGv2Y2QYQYZP3k7P1MhStCDJq +lRrAtb0TgYGiZWj0+Or57X6G4GFh/UxZhYUCy3qzF3WGcCZgbboohoVhkwqd +TWYkVOU02P/zioVBt75ws38mYePOH1JathAYle4173KWhNgVCQ7FWwnke1X/ +qXqOhPIBsUqkM4EnpfxcwXkSGPuMf6G7Eyi2lc0JS0joPawjduYRKHu0+PJK +BQlJxZNvGoMIFLxQzWloJOH+65uODUcJLCqPjshsImGs7OOS/GMElie2O25r +IYEbbtIRfJzAu7qC2ZZ2Ek5OXNwtn0Vgv69WRFcPCT60XL5DLoEmQ4Tj4BAJ +0wZRV/ECgTbVSZxLwySYvbsaLbhI4IaMPlnoexICfhtas/dXAt1MSqpGP5DQ +sNoPF8sJjI/kcj5/JiHf0eVvuwoCUzYdk92eJKFJOVOkXklghtpgd6KUhPmW +R6GvxQQW3Cw/PTNDQgjP9kvqbQLL0hTCH8ySUMji33evJrDCI9QhZZ6E1v6q +I+y7BFYbPmXbfSOBVjrmNH6PwLpJY9niIglrQ1cyamsI/BctaUFh + "]]}, + Annotation[#, "Charting`Private`Tag#1"]& ]}, {}}, + {"WolframDynamicHighlight", <| + "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], + StyleBox[ + DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, + Slot["HighlightElements"], + Slot["LayoutOptions"], + Slot["Meta"], + Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + Line[CompressedData[" +1:eJwVxXk4lAkcAOCxzmaQcTVfmjF8lty6nk2H7+foKVfPYqSIcitHrtnKUVJI +xU6yjSPNonNlUqtDG/NLSs4I7S4qDymKVTEyjuzuH+/zGgQd8Az9jkajuf/n +/0uOBCmtCjltd+4Jj+cXPSVp6OK6+XD3Uf6fRtR6EqYki0/rjnO5hyljvdTG +7UlTkhLM0VfkZlM1sZc3OGRNSaI286O/6hdSr/WmuaalU5KuuYj8T/rXqZXx +wvHp7imJct+gybh+DVXL6c3M2ySVlDaL4j7qN1EjB/fUNDGmJeKb2X1RVr3U +O/b5tdptXyXhVGfhWPwQlbrKp7ggViaJGTYdqhaPUv5vLD0GGXMSusEJkzfr +P1Hv0mzYKs3zklyNFrPSvZPUEkFtd/j+b5KgPp5EvnWainTe2NmpS8O4JyeC +DpjMUtPCsj2eUzS8FavqxXJeoNzZz4cm6uWwNDnyg40PDZIuMBPmyr7DdNG8 +x9SYHCR4EjNkojzSugbgYZI8CHoqjKztFdA4MewQz0wRjnvydl/TV8S3UuEO +Rq0S2CvVZ9tNKKLL8P7UvDgV6Pl9S71DhxJufysw53DokGPFKzOtVMYPj4PS +nlUyQHPA5JBlsgpaMV+yHfeoQeRp5i6R7xKkU9LA/kl1OBuN1lbmdNw67vvV +0FsDzjhnMM3VGPhXfYicrwUTKr50F9E/MvDOyYYArpQJwhejhPIDVQxT5A+0 +t2vCzhval+KK1DA4PvmOapEWDD9UMJJFqqN1uHm7W6A2CIuOugbbLsXnmhYM +vq0OLLVVkbBVNfAPcXqxhbwurIc1XqxEDUyWM/ux9ZUuuDmNjjW91UB6f9K2 +mOplMCkO6Y3yYuLwFYN8UQoLFqvrHS4+YGL+SkKhxpuA6XsVVZlmmigoCmsM +5C4H3o6DhQt5muib79+u+n45OPmpvAyVaeKM02WZqE4POP5GrIwILRwadjhU +n7UCAmYNe1Z3aGHZ5lV6bYFsOJV/QygEbazM4DPDLTmwvJnVc+q6NmZ5B7vK +SzlgF+YSdkBDB9f1l17PatMHt0WlBXqaDhaYFle2uXKhfs0V9XUjOngUcwpc +a7jADe34XneXLrrreV9uNjIAjQWJYKRRF+1jGv2Y2QYQYZP3k7P1MhStCDJq +lRrAtb0TgYGiZWj0+Or57X6G4GFh/UxZhYUCy3qzF3WGcCZgbboohoVhkwqd +TWYkVOU02P/zioVBt75ws38mYePOH1JathAYle4173KWhNgVCQ7FWwnke1X/ +qXqOhPIBsUqkM4EnpfxcwXkSGPuMf6G7Eyi2lc0JS0joPawjduYRKHu0+PJK +BQlJxZNvGoMIFLxQzWloJOH+65uODUcJLCqPjshsImGs7OOS/GMElie2O25r +IYEbbtIRfJzAu7qC2ZZ2Ek5OXNwtn0Vgv69WRFcPCT60XL5DLoEmQ4Tj4BAJ +0wZRV/ECgTbVSZxLwySYvbsaLbhI4IaMPlnoexICfhtas/dXAt1MSqpGP5DQ +sNoPF8sJjI/kcj5/JiHf0eVvuwoCUzYdk92eJKFJOVOkXklghtpgd6KUhPmW +R6GvxQQW3Cw/PTNDQgjP9kvqbQLL0hTCH8ySUMji33evJrDCI9QhZZ6E1v6q +I+y7BFYbPmXbfSOBVjrmNH6PwLpJY9niIglrQ1cyamsI/BctaUFh + "]]}, "Charting`Private`Tag#1"]}}, {}}, <| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0, + 10}, {-6.431385206547294, -1.2766984266457697`}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0, -6.431385206547279}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), + "DefaultStyle" -> { + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, {Log, Exp}}|>, + "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + Plot, "GroupHighlight" -> False|>|>]]& )[<| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0, + 10}, {-6.431385206547294, -1.2766984266457697`}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0, -6.431385206547279}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), + "DefaultStyle" -> { + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, {Log, Exp}}|>, + "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + Plot, "GroupHighlight" -> False|>|>], + ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { + 4.503599627370496*^15, -4.503599627370496*^15}}], + Selectable->False]}, + Annotation[{{{{}, {}, + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + Line[CompressedData[" +1:eJwVxXk4lAkcAOCxzmaQcTVfmjF8lty6nk2H7+foKVfPYqSIcitHrtnKUVJI +xU6yjSPNonNlUqtDG/NLSs4I7S4qDymKVTEyjuzuH+/zGgQd8Az9jkajuf/n +/0uOBCmtCjltd+4Jj+cXPSVp6OK6+XD3Uf6fRtR6EqYki0/rjnO5hyljvdTG +7UlTkhLM0VfkZlM1sZc3OGRNSaI286O/6hdSr/WmuaalU5KuuYj8T/rXqZXx +wvHp7imJct+gybh+DVXL6c3M2ySVlDaL4j7qN1EjB/fUNDGmJeKb2X1RVr3U +O/b5tdptXyXhVGfhWPwQlbrKp7ggViaJGTYdqhaPUv5vLD0GGXMSusEJkzfr +P1Hv0mzYKs3zklyNFrPSvZPUEkFtd/j+b5KgPp5EvnWainTe2NmpS8O4JyeC +DpjMUtPCsj2eUzS8FavqxXJeoNzZz4cm6uWwNDnyg40PDZIuMBPmyr7DdNG8 +x9SYHCR4EjNkojzSugbgYZI8CHoqjKztFdA4MewQz0wRjnvydl/TV8S3UuEO +Rq0S2CvVZ9tNKKLL8P7UvDgV6Pl9S71DhxJufysw53DokGPFKzOtVMYPj4PS +nlUyQHPA5JBlsgpaMV+yHfeoQeRp5i6R7xKkU9LA/kl1OBuN1lbmdNw67vvV +0FsDzjhnMM3VGPhXfYicrwUTKr50F9E/MvDOyYYArpQJwhejhPIDVQxT5A+0 +t2vCzhval+KK1DA4PvmOapEWDD9UMJJFqqN1uHm7W6A2CIuOugbbLsXnmhYM +vq0OLLVVkbBVNfAPcXqxhbwurIc1XqxEDUyWM/ux9ZUuuDmNjjW91UB6f9K2 +mOplMCkO6Y3yYuLwFYN8UQoLFqvrHS4+YGL+SkKhxpuA6XsVVZlmmigoCmsM +5C4H3o6DhQt5muib79+u+n45OPmpvAyVaeKM02WZqE4POP5GrIwILRwadjhU +n7UCAmYNe1Z3aGHZ5lV6bYFsOJV/QygEbazM4DPDLTmwvJnVc+q6NmZ5B7vK +SzlgF+YSdkBDB9f1l17PatMHt0WlBXqaDhaYFle2uXKhfs0V9XUjOngUcwpc +a7jADe34XneXLrrreV9uNjIAjQWJYKRRF+1jGv2Y2QYQYZP3k7P1MhStCDJq +lRrAtb0TgYGiZWj0+Or57X6G4GFh/UxZhYUCy3qzF3WGcCZgbboohoVhkwqd +TWYkVOU02P/zioVBt75ws38mYePOH1JathAYle4173KWhNgVCQ7FWwnke1X/ +qXqOhPIBsUqkM4EnpfxcwXkSGPuMf6G7Eyi2lc0JS0joPawjduYRKHu0+PJK +BQlJxZNvGoMIFLxQzWloJOH+65uODUcJLCqPjshsImGs7OOS/GMElie2O25r +IYEbbtIRfJzAu7qC2ZZ2Ek5OXNwtn0Vgv69WRFcPCT60XL5DLoEmQ4Tj4BAJ +0wZRV/ECgTbVSZxLwySYvbsaLbhI4IaMPlnoexICfhtas/dXAt1MSqpGP5DQ +sNoPF8sJjI/kcj5/JiHf0eVvuwoCUzYdk92eJKFJOVOkXklghtpgd6KUhPmW +R6GvxQQW3Cw/PTNDQgjP9kvqbQLL0hTCH8ySUMji33evJrDCI9QhZZ6E1v6q +I+y7BFYbPmXbfSOBVjrmNH6PwLpJY9niIglrQ1cyamsI/BctaUFh + "]]}, "Charting`Private`Tag#1"]}}, {}}, <| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0, 10}, {-6.431385206547294, -1.2766984266457697`}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0, -6.431385206547279}, + "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, + "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, {Log, Exp}}|>, + "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]]}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0., -4.940897825864207}, + DisplayFunction->Identity, + Epilog->{ + LineBox[{{0, -4.235990818437241}, {100, -4.235990818437241}}], { + Dashing[{Small, Small}], + LineBox[{{0, -4.462870235794434}, {100, -4.462870235794434}}]}}, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{ + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + 15.954589770191003`, RotateLabel -> 0], + Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + Method->{ + "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "DefaultPlotStyle" -> { + Directive[ + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.528488, 0.470624, 0.701351], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.772079, 0.431554, 0.102387], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.363898, 0.618501, 0.782349], + AbsoluteThickness[2]], + Directive[ + RGBColor[1, 0.75, 0], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.647624, 0.37816, 0.614037], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.571589, 0.586483, 0.], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.915, 0.3325, 0.2125], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.736782672705901, 0.358, 0.5030266573755369], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], + AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], + "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], + "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", + "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& )}}, + PlotRange->{{0., 7.}, {-4.940897825864207, -1.2494841173503894`}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, + Ticks->FrontEndValueCache[{Automatic, + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + 15.954589770191003`, RotateLabel -> 0]}, { + Automatic, {{-4.605170185988091, + FormBox[ + TagBox[ + InterpretationBox[ + StyleBox["\"0.01\"", ShowStringCharacters -> False], + 0.01`15.954589770191003, AutoDelete -> True], NumberForm[#, { + DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01, + 0.}}, {-2.995732273553991, + FormBox[ + TagBox[ + InterpretationBox[ + StyleBox["\"0.05\"", ShowStringCharacters -> False], + 0.05`15.954589770191003, AutoDelete -> True], NumberForm[#, { + DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01, + 0.}}, {-2.3025850929940455`, + FormBox[ + TagBox[ + InterpretationBox[ + StyleBox["\"0.10\"", ShowStringCharacters -> False], + 0.1`15.954589770191003, AutoDelete -> True], NumberForm[#, { + DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01, + 0.}}, {-6.907755278982137, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-6.214608098422191, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-5.809142990314028, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-5.521460917862246, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-5.298317366548036, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-5.115995809754082, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-4.961845129926823, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-4.8283137373023015`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-4.710530701645918, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-3.912023005428146, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-3.506557897319982, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-3.2188758248682006`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-2.8134107167600364`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-2.659260036932778, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-2.5257286443082556`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-2.4079456086518722`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-1.6094379124341003`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-1.2039728043259361`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.916290731874155, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.6931471805599453, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.5108256237659907, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.35667494393873245`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.2231435513142097, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}, {-0.10536051565782628`, + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {0., + FormBox[ + TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, + 0.}}}}]]], "Output", + CellChangeTimes->{ + 3.933314569480459*^9, 3.933314776014255*^9, 3.933315050096611*^9, + 3.933315124875785*^9, 3.933315230937805*^9, {3.933315424646577*^9, + 3.933315440629271*^9}, {3.933315508222565*^9, 3.933315544240052*^9}, + 3.933315574273364*^9, 3.933315789646701*^9, 3.933318325316091*^9, + 3.93331991601045*^9, {3.9333199835295067`*^9, 3.93332000354528*^9}, { + 3.9333200648487883`*^9, 3.933320069161152*^9}, 3.93332086227534*^9, + 3.9333229304576607`*^9, 3.933323193315436*^9, 3.933323307491337*^9, + 3.93332335793868*^9, 3.933323790412924*^9, 3.933323879247266*^9, + 3.933323936735761*^9, 3.933324000338538*^9, 3.933324088908325*^9, { + 3.933324271579736*^9, 3.933324295514286*^9}, 3.9333252656038437`*^9, + 3.933325932027325*^9, 3.933326185611639*^9, 3.933327380257976*^9, + 3.933327855377305*^9, 3.9333289764152803`*^9, 3.933329473976025*^9, + 3.9333335191858463`*^9, 3.933335013084547*^9, 3.933335168692399*^9, + 3.933338890097687*^9, 3.933349862019884*^9, 3.933350628258956*^9, + 3.933350902661212*^9, 3.933350938280351*^9, 3.933351036122727*^9, + 3.93335122759247*^9, 3.933378830772743*^9, 3.933380273224647*^9, + 3.933381185655477*^9, 3.933425780560996*^9, 3.9335866019938393`*^9, + 3.9335869574535646`*^9, 3.933588309127631*^9, 3.933589028287553*^9, + 3.93365692259889*^9, 3.933674433161437*^9, {3.933684217189823*^9, + 3.933684244460099*^9}, 3.933732481609768*^9, 3.933761804239264*^9, + 3.933882095393053*^9, 3.933882644184071*^9, 3.934453827193846*^9, + 3.934453935133416*^9, {3.934454497921747*^9, 3.934454540440021*^9}, { + 3.9344547954190073`*^9, 3.934454814220735*^9}, {3.9344548614448547`*^9, + 3.934454878683254*^9}, 3.9344555826454353`*^9, 3.934458335159677*^9, + 3.934515577508449*^9, 3.9345344051730213`*^9, 3.934535314283834*^9, + 3.934539378731186*^9}, + CellLabel-> + "Out[119]=",ExpressionUUID->"555ef3d3-fdd9-4f9d-9081-2b0e0dfca703"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"nfit", "=", + RowBox[{"NonlinearModelFit", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Around", "[", + RowBox[{ + RowBox[{"Mean", "[", "#", "]"}], ",", + RowBox[{ + RowBox[{"StandardDeviation", "[", "#", "]"}], "/", + SqrtBox[ + RowBox[{"Length", "[", "#", "]"}]]}]}], "]"}], "&"}], "/@", + RowBox[{"(", + RowBox[{"Abs", "@", + RowBox[{"{", + RowBox[{ + "testdat5", ",", "testdat6", ",", "testdat7", ",", "testdat8"}], + "}"}]}], ")"}]}], ",", + RowBox[{"m0", "-", + RowBox[{"Exp", "[", + RowBox[{"b", "-", + RowBox[{ + RowBox[{"1", "/", "2"}], " ", "x"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"m0", ",", "0.5773502735179695`"}], "}"}], ",", "b"}], "}"}], + ",", "x"}], "]"}]}]], "Input", + CellChangeTimes->{{3.9333274745806313`*^9, 3.933327606519607*^9}, { + 3.9333294979365683`*^9, 3.933329498589426*^9}, {3.933335031417267*^9, + 3.933335034000002*^9}, {3.933335109772366*^9, 3.93333512169093*^9}, { + 3.933378846662936*^9, 3.9333788765328608`*^9}, {3.933732493147313*^9, + 3.933732494154268*^9}}, + CellLabel-> + "In[120]:=",ExpressionUUID->"5d1f916c-a784-49e1-8c0c-4c3c76f0c816"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{ + TagBox["FittedModel", + "SummaryHead"], "[", + DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + GridBox[{{ + TagBox[ + TagBox[ + RowBox[{"0.5781942486778331`", "\[VeryThinSpace]", "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2.815385247810511`"}], "-", + FractionBox["x", "2"]}]]}], Short], "SummaryItem"]}}, + AutoDelete -> False, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}]}}, AutoDelete -> + False, BaselinePosition -> {1, 1}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], True -> + GridBox[{{ + GridBox[{{ + TagBox[ + TagBox[ + RowBox[{ + RowBox[{"0.5781942486778331`", "\[VeryThinSpace]"}], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2.815385247810511`"}], "-", + FractionBox["x", "2"]}]]}], Short], "SummaryItem"]}}, + AutoDelete -> False, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}]}}, AutoDelete -> + False, BaselinePosition -> {1, 1}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + DynamicModuleValues:>{}], "]"}], + FittedModel[{ + "Nonlinear", {$CellContext`m0 -> + 0.5781942486778331, $CellContext`b -> -2.815385247810511}, \ +{{$CellContext`x}, - + E^($CellContext`b + + Rational[-1, 2] $CellContext`x) + $CellContext`m0}}, {{ + 1.12488028239348*^6, 3.6036949114419185`*^6, 5.4436861328895595`*^6, + 457999.10940479144`}}, {{1, 0.5419122081117088}, {2, 0.5558590317129761}, { + 3, 0.5653272267648564}, {4, 0.5665283360192485}}, + Function[Null, + Internal`LocalizedBlock[{$CellContext`b, $CellContext`m0, \ +$CellContext`x}, #], {HoldAll}]], + Editable->False, + SelectWithContents->True, + Selectable->False]], "Output", + CellChangeTimes->{{3.933327537890448*^9, 3.933327606814225*^9}, + 3.933327857227265*^9, 3.933328981987609*^9, 3.933329475215975*^9, + 3.933329505392723*^9, 3.933333520418701*^9, {3.933335016703129*^9, + 3.933335034230805*^9}, {3.93333511059128*^9, 3.9333351225979652`*^9}, + 3.933335170429339*^9, 3.933338900616083*^9, 3.933349867550765*^9, + 3.933350632085908*^9, 3.933350906234487*^9, 3.933350939679153*^9, + 3.933351045243985*^9, 3.933351228291609*^9, {3.93337884008138*^9, + 3.933378876780153*^9}, 3.933380276984502*^9, 3.933381187016794*^9, + 3.9334257806704807`*^9, 3.933586608241541*^9, 3.933586960952813*^9, + 3.933588312570515*^9, 3.933589029477272*^9, 3.933656924313829*^9, + 3.93367443539548*^9, 3.933684246544631*^9, 3.933732496204627*^9, + 3.933761806890572*^9, 3.933882095662656*^9, 3.933882651217222*^9, + 3.934453850589938*^9, 3.934454953731354*^9, 3.934455586216592*^9, + 3.934458337358016*^9, 3.93451559163221*^9, 3.934534413203937*^9, + 3.934535318372383*^9, 3.9345393909689207`*^9}, + CellLabel-> + "Out[120]=",ExpressionUUID->"223277e0-8af6-4975-880b-5908889299ea"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"nfit2", "=", + RowBox[{"NonlinearModelFit", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Around", "[", + RowBox[{ + RowBox[{"Mean", "[", "#", "]"}], ",", + RowBox[{ + RowBox[{"StandardDeviation", "[", "#", "]"}], "/", + SqrtBox[ + RowBox[{"Length", "[", "#", "]"}]]}]}], "]"}], "&"}], "/@", + RowBox[{"(", + RowBox[{"Abs", "@", + RowBox[{"{", + RowBox[{ + "testdat4", ",", "testdat5", ",", "testdat6", ",", "testdat7", ",", + "testdat8"}], "}"}]}], ")"}]}], ",", + RowBox[{"m0", "-", + RowBox[{"Exp", "[", + RowBox[{"b", "-", + RowBox[{"c", " ", "x"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"m0", ",", "0.5773502735179695`"}], "}"}], ",", "b", ",", + "c"}], "}"}], ",", "x"}], "]"}]}]], "Input", + CellChangeTimes->{{3.9333274745806313`*^9, 3.933327606519607*^9}, { + 3.9333294979365683`*^9, 3.933329498589426*^9}, {3.933335031417267*^9, + 3.933335034000002*^9}, {3.933335109772366*^9, 3.93333512169093*^9}, { + 3.933378846662936*^9, 3.9333788765328608`*^9}, {3.933588494183367*^9, + 3.933588513480479*^9}, {3.933732501558835*^9, 3.933732503555507*^9}}, + CellLabel-> + "In[121]:=",ExpressionUUID->"a04437e1-ad3b-4721-b631-2e920551efc0"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{ + TagBox["FittedModel", + "SummaryHead"], "[", + DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + GridBox[{{ + TagBox[ + TagBox[ + RowBox[{"0.5770023335326001`", "\[VeryThinSpace]", "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2.293582536985087`"}], "-", + RowBox[{"0.5278922351909454`", " ", "x"}]}]]}], Short], + "SummaryItem"]}}, AutoDelete -> False, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}]}}, AutoDelete -> + False, BaselinePosition -> {1, 1}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], True -> + GridBox[{{ + GridBox[{{ + TagBox[ + TagBox[ + RowBox[{ + RowBox[{"0.5770023335326001`", "\[VeryThinSpace]"}], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2.293582536985087`"}], "-", + RowBox[{"0.5278922351909454`", " ", "x"}]}]]}], Short], + "SummaryItem"]}}, AutoDelete -> False, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}]}}, AutoDelete -> + False, BaselinePosition -> {1, 1}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + DynamicModuleValues:>{}], "]"}], + FittedModel[{ + "Nonlinear", {$CellContext`m0 -> + 0.5770023335326001, $CellContext`b -> -2.293582536985087, $CellContext`c -> + 0.5278922351909454}, {{$CellContext`x}, - + E^($CellContext`b - $CellContext`c $CellContext`x) + $CellContext`m0}}, \ +{{469005.4805095802, 1.12488028239348*^6, 3.6036949114419185`*^6, + 5.4436861328895595`*^6, + 457999.10940479144`}}, {{1, 0.5177282403197767}, {2, 0.5419122081117088}, { + 3, 0.5558590317129761}, {4, 0.5653272267648564}, {5, 0.5665283360192485}}, + Function[Null, + Internal`LocalizedBlock[{$CellContext`b, $CellContext`c, $CellContext`m0, \ +$CellContext`x}, #], {HoldAll}]], + Editable->False, + SelectWithContents->True, + Selectable->False]], "Output", + CellChangeTimes->{{3.933327537890448*^9, 3.933327606814225*^9}, + 3.933327857227265*^9, 3.933328981987609*^9, 3.933329475215975*^9, + 3.933329505392723*^9, 3.933333520418701*^9, {3.933335016703129*^9, + 3.933335034230805*^9}, {3.93333511059128*^9, 3.9333351225979652`*^9}, + 3.933335170429339*^9, 3.933338900616083*^9, 3.933349867550765*^9, + 3.933350632085908*^9, 3.933350906234487*^9, 3.933350939679153*^9, + 3.933351045243985*^9, 3.933351228291609*^9, {3.93337884008138*^9, + 3.933378876780153*^9}, 3.933380276984502*^9, 3.933381187016794*^9, + 3.9334257806704807`*^9, 3.933586608241541*^9, 3.933586960952813*^9, + 3.933588312570515*^9, {3.933588500571073*^9, 3.933588513829632*^9}, + 3.933589030503839*^9, 3.933656925136177*^9, 3.933674436235938*^9, + 3.933684247263932*^9, 3.933732503982801*^9, 3.933761807510949*^9, + 3.933882095789161*^9, 3.933882652347904*^9, 3.934453851242177*^9, + 3.934454954514925*^9, 3.9344555869796124`*^9, 3.934458338263588*^9, + 3.93451559205169*^9, 3.934534413698538*^9, 3.934535320540882*^9, + 3.934539391220738*^9}, + CellLabel-> + "Out[121]=",ExpressionUUID->"abb84f5c-6797-4fca-8d62-d50091887e73"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"ListPlot", "[", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"Around", "@@", + RowBox[{ + RowBox[{"nfit", "[", "\"\<ParameterTableEntries\>\"", "]"}], "[", + RowBox[{"[", + RowBox[{"1", ",", + RowBox[{";;", "2"}]}], "]"}], "]"}]}], ")"}], "-", "mMax1"}], ",", + RowBox[{ + RowBox[{"(", + RowBox[{"Around", "@@", + RowBox[{ + RowBox[{"nfit2", "[", "\"\<ParameterTableEntries\>\"", "]"}], "[", + RowBox[{"[", + RowBox[{"1", ",", + RowBox[{";;", "2"}]}], "]"}], "]"}]}], ")"}], "-", "mMax1"}], ",", + RowBox[{ + RowBox[{"(", + RowBox[{"Around", "@@", + RowBox[{ + RowBox[{"nfit", "[", "\"\<ParameterTableEntries\>\"", "]"}], "[", + RowBox[{"[", + RowBox[{"1", ",", + RowBox[{";;", "2"}]}], "]"}], "]"}]}], ")"}], "-", "mMax2"}], ",", + RowBox[{ + RowBox[{"(", + RowBox[{"Around", "@@", + RowBox[{ + RowBox[{"nfit2", "[", "\"\<ParameterTableEntries\>\"", "]"}], "[", + RowBox[{"[", + RowBox[{"1", ",", + RowBox[{";;", "2"}]}], "]"}], "]"}]}], ")"}], "-", "mMax2"}], ",", + RowBox[{ + RowBox[{"(", + RowBox[{"Around", "@@", + RowBox[{ + RowBox[{"nfit", "[", "\"\<ParameterTableEntries\>\"", "]"}], "[", + RowBox[{"[", + RowBox[{"1", ",", + RowBox[{";;", "2"}]}], "]"}], "]"}]}], ")"}], "-", "mMax3"}], ",", + RowBox[{ + RowBox[{"(", + RowBox[{"Around", "@@", + RowBox[{ + RowBox[{"nfit2", "[", "\"\<ParameterTableEntries\>\"", "]"}], "[", + RowBox[{"[", + RowBox[{"1", ",", + RowBox[{";;", "2"}]}], "]"}], "]"}]}], ")"}], "-", "mMax3"}]}], + "}"}], "]"}]], "Input", + CellChangeTimes->{{3.9335866190130463`*^9, 3.933586681493836*^9}, { + 3.93358847016772*^9, 3.9335884777750397`*^9}, {3.93358852572222*^9, + 3.933588540209317*^9}, {3.9344540500263643`*^9, 3.934454056689361*^9}, { + 3.934454958359186*^9, 3.93445499078004*^9}, {3.934539394009294*^9, + 3.9345393957851963`*^9}}, + CellLabel-> + "In[122]:=",ExpressionUUID->"fe010fe0-3f0c-4ab4-be57-676536c7b785"], + +Cell[BoxData[ + GraphicsBox[{{{ + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{1., -0.0007379574579611955}, {1., 0.0008439794882072471}}], + LineBox[{{1., 0.0008439794882072471}, {1., + 0.0024259164343756897`}}]}}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{2., -0.004611185070536403}, { + 2., -0.00034793565702573304`}}], + LineBox[{{2., -0.00034793565702573304`}, {2., + 0.003915313756484937}}]}}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{3., 0.013727512982108099`}, {3., 0.015309449928276542`}}], + LineBox[{{3., 0.015309449928276542`}, {3., 0.016891386874444983`}}]}}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{4., 0.009854285369532891}, {4., 0.014117534783043562`}}], + LineBox[{{4., 0.014117534783043562`}, {4., 0.018380784196554232`}}]}}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{5., 0.010791266701837316`}, {5., 0.01237320364800576}}], + LineBox[{{5., 0.01237320364800576}, {5., 0.013955140594174202`}}]}}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{{}, { + LineBox[{{6., 0.006918039089262109}, {6., 0.01118128850277278}}], + LineBox[{{6., 0.01118128850277278}, {6., 0.01544453791628345}}]}}, + Antialiasing->False]}}, { + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{ + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{1., 0.0024259164343756897`}, + Offset[{3, 0}, {1., 0.0024259164343756897`}]}, {{1., + 0.0024259164343756897`}, + Offset[{-3, 0}, {1., 0.0024259164343756897`}]}, {{ + 1., -0.0007379574579611955}, + Offset[{3, 0}, {1., -0.0007379574579611955}]}, {{ + 1., -0.0007379574579611955}, + Offset[{-3, 0}, {1., -0.0007379574579611955}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{ + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{2., 0.003915313756484937}, + Offset[{3, 0}, {2., 0.003915313756484937}]}, {{2., + 0.003915313756484937}, + Offset[{-3, 0}, {2., 0.003915313756484937}]}, {{ + 2., -0.004611185070536403}, + Offset[{3, 0}, {2., -0.004611185070536403}]}, {{ + 2., -0.004611185070536403}, + Offset[{-3, 0}, {2., -0.004611185070536403}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{ + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{3., 0.016891386874444983`}, + Offset[{3, 0}, {3., 0.016891386874444983`}]}, {{3., + 0.016891386874444983`}, + Offset[{-3, 0}, {3., 0.016891386874444983`}]}, {{3., + 0.013727512982108099`}, + Offset[{3, 0}, {3., 0.013727512982108099`}]}, {{3., + 0.013727512982108099`}, + Offset[{-3, 0}, {3., 0.013727512982108099`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{ + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{4., 0.018380784196554232`}, + Offset[{3, 0}, {4., 0.018380784196554232`}]}, {{4., + 0.018380784196554232`}, + Offset[{-3, 0}, {4., 0.018380784196554232`}]}, {{4., + 0.009854285369532891}, + Offset[{3, 0}, {4., 0.009854285369532891}]}, {{4., + 0.009854285369532891}, + Offset[{-3, 0}, {4., 0.009854285369532891}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{ + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{5., 0.013955140594174202`}, + Offset[{3, 0}, {5., 0.013955140594174202`}]}, {{5., + 0.013955140594174202`}, + Offset[{-3, 0}, {5., 0.013955140594174202`}]}, {{5., + 0.010791266701837316`}, + Offset[{3, 0}, {5., 0.010791266701837316`}]}, {{5., + 0.010791266701837316`}, + Offset[{-3, 0}, {5., 0.010791266701837316`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, + Antialiasing->False]}, + {RGBColor[0.368417, 0.506779, 0.709798], + StyleBox[{ + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{6., 0.01544453791628345}, + Offset[{3, 0}, {6., 0.01544453791628345}]}, {{6., + 0.01544453791628345}, + Offset[{-3, 0}, {6., 0.01544453791628345}]}, {{6., + 0.006918039089262109}, + Offset[{3, 0}, {6., 0.006918039089262109}]}, {{6., + 0.006918039089262109}, + Offset[{-3, 0}, {6., 0.006918039089262109}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, + Antialiasing->False]}}}, + InterpretationBox[{ + TagBox[ + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ + 0.012833333333333334`], AbsoluteThickness[2], + PointBox[{{1., 0.0008439794882072471}, { + 2., -0.00034793565702573304`}, {3., 0.015309449928276542`}, {4., + 0.014117534783043562`}, {5., 0.01237320364800576}, {6., + 0.01118128850277278}}]}, + Annotation[#, "Charting`Private`Tag#1"]& ], + {"WolframDynamicHighlight", <| + "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], + StyleBox[ + DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, + Slot["HighlightElements"], + Slot["LayoutOptions"], + Slot["Meta"], + Charting`HighlightActionFunction["DynamicHighlight", {{ + Annotation[{ + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + + Point[{{1., 0.0008439794882072471}, { + 2., -0.00034793565702573304`}, {3., 0.015309449928276542`}, {4., + 0.014117534783043562`}, {5., 0.01237320364800576}, {6., + 0.01118128850277278}}]}, "Charting`Private`Tag#1"]}}, <| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0., 6.}, {-0.004611185070536403, + 0.018380784196554232`}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0., 0}, "ImageSize" -> {360, 360/GoldenRatio}, + "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> + GoldenRatio^(-1), "DefaultStyle" -> { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, { + Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> + False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + ListPlot, "GroupHighlight" -> False|>|>]]& )[<| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0., 6.}, {-0.004611185070536403, + 0.018380784196554232`}}, + "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0., 0}, "ImageSize" -> {360, 360/GoldenRatio}, + "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> + GoldenRatio^(-1), "DefaultStyle" -> { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, { + Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> + False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + ListPlot, "GroupHighlight" -> False|>|>], + ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { + 4.503599627370496*^15, -4.503599627370496*^15}}], + Selectable->False]}, + Annotation[{{ + Annotation[{ + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + Point[{{1., 0.0008439794882072471}, {2., -0.00034793565702573304`}, { + 3., 0.015309449928276542`}, {4., 0.014117534783043562`}, {5., + 0.01237320364800576}, {6., 0.01118128850277278}}]}, + "Charting`Private`Tag#1"]}}, <| + "HighlightElements" -> <| + "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, + "LayoutOptions" -> <| + "PanelPlotLayout" -> <||>, + "PlotRange" -> {{0., 6.}, {-0.004611185070536403, + 0.018380784196554232`}}, "Frame" -> {{False, False}, {False, False}}, + "AxesOrigin" -> {0., 0}, "ImageSize" -> {360, 360/GoldenRatio}, + "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> + GoldenRatio^(-1), "DefaultStyle" -> { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]]}, + "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), + "ScalingFunctions" -> {{Identity, Identity}, { + Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, + "Meta" -> <| + "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> + ListPlot, "GroupHighlight" -> False|>|>, + "DynamicHighlight"]], {{}, {}}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0., 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + Method->{ + "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "DefaultPlotStyle" -> { + Directive[ + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.528488, 0.470624, 0.701351], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.772079, 0.431554, 0.102387], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.363898, 0.618501, 0.782349], + AbsoluteThickness[2]], + Directive[ + RGBColor[1, 0.75, 0], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.647624, 0.37816, 0.614037], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.571589, 0.586483, 0.], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.915, 0.3325, 0.2125], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.736782672705901, 0.358, 0.5030266573755369], + AbsoluteThickness[2]], + Directive[ + RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], + AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], + "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], + "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", + "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, + PlotRange->{{0., 6.}, {-0.004611185070536403, 0.018380784196554232`}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.933586626023911*^9, 3.933586681725658*^9}, + 3.933586964887051*^9, 3.933588316828043*^9, 3.933588477963081*^9, { + 3.933588532908608*^9, 3.933588540478689*^9}, 3.933589031678393*^9, + 3.93365692633739*^9, 3.933674436742095*^9, 3.933684247908544*^9, + 3.933732506452458*^9, 3.933761808014026*^9, 3.933882096158471*^9, + 3.933882653206609*^9, 3.93445385181068*^9, 3.934454056980402*^9, { + 3.934454982492132*^9, 3.934454990993188*^9}, 3.934455587699979*^9, + 3.934515593157281*^9, 3.934534414474315*^9, 3.934535321250602*^9, + 3.934539396074054*^9}, + CellLabel-> + "Out[122]=",ExpressionUUID->"fa606754-516b-47c6-9393-b3cd74e781ad"] +}, Open ]] +}, Open ]] }, Open ]] }, -WindowSize->{506.25, 558}, -WindowMargins->{{0, Automatic}, {Automatic, 0}}, +WindowSize->{1918.5, 1020.75}, +WindowMargins->{{0, Automatic}, {3, -1.5}}, FrontEndVersion->"14.0 for Linux x86 (64-bit) (December 12, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"1d2cd708-7bfe-47b3-9001-275c01e83a02" @@ -13884,66 +18650,145 @@ CellTagsIndex->{} Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 158, 3, 50, "Section",ExpressionUUID->"bbc7c15f-5b7d-4690-8a22-e1e38c3edf32"], -Cell[741, 27, 4322, 136, 237, "Input",ExpressionUUID->"41b24844-1147-4d0a-b487-e8350b1d5c79"], -Cell[5066, 165, 1928, 62, 161, "Input",ExpressionUUID->"b03bc860-b1c0-4e93-9060-8118f88e47e4"], -Cell[6997, 229, 2819, 82, 87, "Input",ExpressionUUID->"b26718dc-2cea-4fdb-b7ee-88d00ee5b4db"], -Cell[9819, 313, 698, 21, 47, "Input",ExpressionUUID->"08648c98-5e11-49e5-9ecf-4568bf068ad0"], -Cell[10520, 336, 753, 20, 38, "Input",ExpressionUUID->"336506fe-ed5b-44be-8723-7d5b12b2b85d"], -Cell[11276, 358, 352, 10, 35, "Input",ExpressionUUID->"bc0c79a5-5d5f-41ea-a0ca-c421c1cc8550"] +Cell[741, 27, 4315, 135, 84, "Input",ExpressionUUID->"41b24844-1147-4d0a-b487-e8350b1d5c79"], +Cell[5059, 164, 1923, 61, 145, "Input",ExpressionUUID->"b03bc860-b1c0-4e93-9060-8118f88e47e4"], +Cell[6985, 227, 2814, 81, 29, "Input",ExpressionUUID->"b26718dc-2cea-4fdb-b7ee-88d00ee5b4db"], +Cell[9802, 310, 693, 20, 47, "Input",ExpressionUUID->"08648c98-5e11-49e5-9ecf-4568bf068ad0"], +Cell[10498, 332, 748, 19, 22, "Input",ExpressionUUID->"336506fe-ed5b-44be-8723-7d5b12b2b85d"], +Cell[11249, 353, 4547, 145, 51, "Input",ExpressionUUID->"c1297907-e97f-4b0c-9644-ead31698af8d"], +Cell[15799, 500, 348, 9, 35, "Input",ExpressionUUID->"bc0c79a5-5d5f-41ea-a0ca-c421c1cc8550"] }, Open ]], Cell[CellGroupData[{ -Cell[11665, 373, 150, 3, 50, "Section",ExpressionUUID->"f6acd268-0983-4ccc-b375-6fb0a5032805"], +Cell[16184, 514, 150, 3, 50, "Section",ExpressionUUID->"f6acd268-0983-4ccc-b375-6fb0a5032805"], Cell[CellGroupData[{ -Cell[11840, 380, 163, 3, 41, "Subsection",ExpressionUUID->"80e4596a-0f6c-482b-9d38-4e3778e2b753"], +Cell[16359, 521, 163, 3, 41, "Subsection",ExpressionUUID->"80e4596a-0f6c-482b-9d38-4e3778e2b753"], Cell[CellGroupData[{ -Cell[12028, 387, 5751, 144, 307, "Input",ExpressionUUID->"6c182b3c-b61b-4da5-97eb-545f093d6397"], -Cell[17782, 533, 179108, 3136, 229, "Output",ExpressionUUID->"92c1128c-8ae6-43fd-b1e6-03e770bd251a"] +Cell[16547, 528, 5751, 144, 307, "Input",ExpressionUUID->"6c182b3c-b61b-4da5-97eb-545f093d6397"], +Cell[22301, 674, 179108, 3136, 229, "Output",ExpressionUUID->"92c1128c-8ae6-43fd-b1e6-03e770bd251a"] }, Open ]], Cell[CellGroupData[{ -Cell[196927, 3674, 7155, 179, 479, "Input",ExpressionUUID->"987acbda-9443-4a50-9527-bdd438ec8a24"], -Cell[204085, 3855, 128644, 2400, 218, "Output",ExpressionUUID->"34c26d83-2227-445e-bd36-24d72298b64f"] +Cell[201446, 3815, 7155, 179, 479, "Input",ExpressionUUID->"987acbda-9443-4a50-9527-bdd438ec8a24"], +Cell[208604, 3996, 128644, 2400, 218, "Output",ExpressionUUID->"34c26d83-2227-445e-bd36-24d72298b64f"] }, Open ]], -Cell[332744, 6258, 604, 15, 53, "Input",ExpressionUUID->"718f433c-5ec4-4bac-860a-5bace6d1b65e"] +Cell[337263, 6399, 604, 15, 53, "Input",ExpressionUUID->"718f433c-5ec4-4bac-860a-5bace6d1b65e"] }, Closed]], Cell[CellGroupData[{ -Cell[333385, 6278, 175, 3, 30, "Subsection",ExpressionUUID->"5df07bd5-2097-4030-81f4-b69a40cb15f6"], +Cell[337904, 6419, 175, 3, 30, "Subsection",ExpressionUUID->"5df07bd5-2097-4030-81f4-b69a40cb15f6"], Cell[CellGroupData[{ -Cell[333585, 6285, 8959, 206, 375, "Input",ExpressionUUID->"5506e17b-9ca1-45dd-9a22-41bf59df28ce"], -Cell[342547, 6493, 23284, 456, 150, "Output",ExpressionUUID->"7d1ebcf7-6b77-4c82-ace9-15e6e11488d3"] +Cell[338104, 6426, 8959, 206, 375, "Input",ExpressionUUID->"5506e17b-9ca1-45dd-9a22-41bf59df28ce"], +Cell[347066, 6634, 23284, 456, 150, "Output",ExpressionUUID->"7d1ebcf7-6b77-4c82-ace9-15e6e11488d3"] }, Open ]], Cell[CellGroupData[{ -Cell[365868, 6954, 8991, 213, 421, "Input",ExpressionUUID->"92265c04-e236-4e0e-8f2d-85dfff966601"], -Cell[374862, 7169, 12409, 272, 150, "Output",ExpressionUUID->"53c5a35a-9fc8-47da-9a6b-cdad4b2bf857"] +Cell[370387, 7095, 8991, 213, 421, "Input",ExpressionUUID->"92265c04-e236-4e0e-8f2d-85dfff966601"], +Cell[379381, 7310, 12409, 272, 150, "Output",ExpressionUUID->"53c5a35a-9fc8-47da-9a6b-cdad4b2bf857"] }, Open ]], Cell[CellGroupData[{ -Cell[387308, 7446, 7270, 172, 130, "Input",ExpressionUUID->"2024fdeb-ff4f-4e26-834d-bece770e0a79"], -Cell[394581, 7620, 25691, 487, 161, "Output",ExpressionUUID->"9103c484-5e87-4c28-90d1-8b05b08fa4f0"] +Cell[391827, 7587, 7270, 172, 130, "Input",ExpressionUUID->"2024fdeb-ff4f-4e26-834d-bece770e0a79"], +Cell[399100, 7761, 25691, 487, 161, "Output",ExpressionUUID->"9103c484-5e87-4c28-90d1-8b05b08fa4f0"] }, Open ]], Cell[CellGroupData[{ -Cell[420309, 8112, 6054, 140, 114, "Input",ExpressionUUID->"b3fc4f55-4c0b-4c22-9d55-e6dad1b1d50e"], -Cell[426366, 8254, 24699, 465, 161, "Output",ExpressionUUID->"287418c4-2a20-4424-ba1b-44882842bdbc"] +Cell[424828, 8253, 6054, 140, 114, "Input",ExpressionUUID->"b3fc4f55-4c0b-4c22-9d55-e6dad1b1d50e"], +Cell[430885, 8395, 24699, 465, 161, "Output",ExpressionUUID->"287418c4-2a20-4424-ba1b-44882842bdbc"] }, Open ]], -Cell[451080, 8722, 1101, 27, 84, "Input",ExpressionUUID->"587076b9-908e-406a-9c46-ad3a25c086de"] +Cell[455599, 8863, 1101, 27, 84, "Input",ExpressionUUID->"587076b9-908e-406a-9c46-ad3a25c086de"] }, Closed]], Cell[CellGroupData[{ -Cell[452218, 8754, 162, 3, 30, "Subsection",ExpressionUUID->"5159d821-004a-42df-9d4c-fa83e8d77495"], +Cell[456737, 8895, 162, 3, 30, "Subsection",ExpressionUUID->"5159d821-004a-42df-9d4c-fa83e8d77495"], +Cell[CellGroupData[{ +Cell[456924, 8902, 7382, 172, 75, "Input",ExpressionUUID->"6c065066-6bf9-4f3a-a1a0-0b9cba9f452c"], +Cell[464309, 9076, 51249, 968, 177, "Output",ExpressionUUID->"7e82ffb6-84e7-4a29-8501-6c669630aa8e"] +}, Open ]], +Cell[CellGroupData[{ +Cell[515595, 10049, 6421, 149, 86, "Input",ExpressionUUID->"b7835bf7-af7e-4043-ba65-56202b80be80"], +Cell[522019, 10200, 2560, 41, 51, "Message",ExpressionUUID->"27f8d3a1-af00-43ff-a010-d91ea739ca18"], +Cell[524582, 10243, 1028, 19, 22, "Message",ExpressionUUID->"eed8c3e0-eea5-4156-aeeb-895e7f9ef13f"], +Cell[525613, 10264, 93525, 1708, 177, "Output",ExpressionUUID->"0bb4ebbd-525a-40a9-8738-739ec949f19e"] +}, Open ]], Cell[CellGroupData[{ -Cell[452405, 8761, 7388, 172, 155, "Input",ExpressionUUID->"6c065066-6bf9-4f3a-a1a0-0b9cba9f452c"], -Cell[459796, 8935, 51249, 968, 177, "Output",ExpressionUUID->"7e82ffb6-84e7-4a29-8501-6c669630aa8e"] +Cell[619175, 11977, 8597, 210, 106, "Input",ExpressionUUID->"60fc774e-789f-47e9-995f-80fba0589db7"], +Cell[627775, 12189, 3522, 55, 51, "Message",ExpressionUUID->"3f1e63ad-98f0-4464-9bdf-6d9d8e725115"], +Cell[631300, 12246, 97618, 1734, 177, "Output",ExpressionUUID->"d21fb0df-419f-4363-bb7f-617faf904692"] }, Open ]], +Cell[728933, 13983, 861, 21, 68, "Input",ExpressionUUID->"1b485599-abd1-4bc0-967d-165fc92d833b"] +}, Closed]], Cell[CellGroupData[{ -Cell[511082, 9908, 6421, 149, 150, "Input",ExpressionUUID->"b7835bf7-af7e-4043-ba65-56202b80be80"], -Cell[517506, 10059, 2562, 41, 125, "Message",ExpressionUUID->"27f8d3a1-af00-43ff-a010-d91ea739ca18"], -Cell[520071, 10102, 1030, 19, 22, "Message",ExpressionUUID->"eed8c3e0-eea5-4156-aeeb-895e7f9ef13f"], -Cell[521104, 10123, 93527, 1708, 177, "Output",ExpressionUUID->"0bb4ebbd-525a-40a9-8738-739ec949f19e"] +Cell[729831, 14009, 168, 3, 30, "Subsection",ExpressionUUID->"b535800b-9d38-4d4f-9e23-c69cf4d429fb"], +Cell[730002, 14014, 633, 15, 24, "Input",ExpressionUUID->"f9bfb54c-f8f3-4525-abeb-233750cee79a"], +Cell[730638, 14031, 1328, 26, 24, "Input",ExpressionUUID->"7618c6de-8d4a-471b-b096-c27a59d6c675"], +Cell[CellGroupData[{ +Cell[731991, 14061, 369, 8, 22, "Input",ExpressionUUID->"f0210815-94c5-4cb1-80fe-bd2530af8882"], +Cell[732363, 14071, 1159, 23, 42, "Output",ExpressionUUID->"fe6a90df-8284-4593-ad95-18776dee12ba"] }, Open ]], Cell[CellGroupData[{ -Cell[614668, 11836, 8599, 210, 223, "Input",ExpressionUUID->"60fc774e-789f-47e9-995f-80fba0589db7"], -Cell[623270, 12048, 3526, 55, 120, "Message",ExpressionUUID->"3f1e63ad-98f0-4464-9bdf-6d9d8e725115"], -Cell[626799, 12105, 97620, 1734, 177, "Output",ExpressionUUID->"d21fb0df-419f-4363-bb7f-617faf904692"] +Cell[733559, 14099, 1477, 42, 39, "Input",ExpressionUUID->"94b6c17c-655e-47eb-9104-1a3e8efc5930"], +Cell[735039, 14143, 2609, 78, 54, "Output",ExpressionUUID->"a47fe3af-36d2-4287-bd83-2a93e3914f03"] }, Open ]], -Cell[724434, 13842, 861, 21, 68, "Input",ExpressionUUID->"1b485599-abd1-4bc0-967d-165fc92d833b"] -}, Closed]] +Cell[737663, 14224, 2817, 65, 39, "Input",ExpressionUUID->"baaf63c8-5be4-4d2a-a22b-7dc91aa7910c"], +Cell[CellGroupData[{ +Cell[740505, 14293, 676, 19, 35, "Input",ExpressionUUID->"f413f90a-2bbe-4119-afe0-c4eeb6f72ad3"], +Cell[741184, 14314, 1383, 37, 25, "Output",ExpressionUUID->"88b56873-7ab9-4829-8db3-a20d0df14d25"] +}, Open ]], +Cell[CellGroupData[{ +Cell[742604, 14356, 2957, 64, 35, "Input",ExpressionUUID->"dcf47297-6e73-48db-95c6-2be317bfb5b5"], +Cell[745564, 14422, 52122, 944, 174, "Output",ExpressionUUID->"4f584ccd-3977-478d-8868-422d8d96a0a6"] +}, Open ]], +Cell[CellGroupData[{ +Cell[797723, 15371, 632, 16, 35, "Input",ExpressionUUID->"f4199132-776b-444e-905f-98463bad3266"], +Cell[798358, 15389, 396, 7, 42, "Output",ExpressionUUID->"c3a6a8d3-f6e2-4820-ad3e-241c8716142b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[798791, 15401, 1520, 37, 35, "Input",ExpressionUUID->"a2bdf3e3-eab7-4136-8b03-4eb31b271821"], +Cell[800314, 15440, 1838, 26, 25, "Output",ExpressionUUID->"d0a3d4a6-34ba-40f2-a7d0-f233befe2a26"] +}, Open ]], +Cell[CellGroupData[{ +Cell[802189, 15471, 1391, 36, 35, "Input",ExpressionUUID->"bdc90b67-e81a-4882-976a-f1ebbb721caf"], +Cell[803583, 15509, 388, 6, 25, "Output",ExpressionUUID->"542b581b-e106-4e4d-9ba9-cf5b96db734b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[804008, 15520, 4471, 129, 145, "Input",ExpressionUUID->"b7c04588-51c4-46ba-b43a-323e54fb82c5"], +Cell[808482, 15651, 18989, 380, 178, "Output",ExpressionUUID->"b775e616-2fc8-4073-ba47-b224ed44076b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[827508, 16036, 1344, 40, 22, "Input",ExpressionUUID->"d5c71612-e41c-40a0-8f22-153b347f934a"], +Cell[828855, 16078, 5345, 118, 186, "Output",ExpressionUUID->"4ecffab3-f026-461d-b513-af94d64cbec9"] +}, Open ]], +Cell[CellGroupData[{ +Cell[834237, 16201, 457, 10, 22, "Input",ExpressionUUID->"6729ea2e-916f-4c77-ad4d-d272adeb529e"], +Cell[834697, 16213, 1735, 28, 35, "Output",ExpressionUUID->"16ffcae8-c60a-4d71-8eff-cb2c15276070"] +}, Open ]], +Cell[CellGroupData[{ +Cell[836469, 16246, 961, 25, 25, "Input",ExpressionUUID->"04e6644b-90a9-4b4e-90ba-9f54a0b030a5"], +Cell[837433, 16273, 3951, 80, 49, "Output",ExpressionUUID->"fb5097ef-27b9-4507-a7ab-ed635f94e150"] +}, Open ]], +Cell[CellGroupData[{ +Cell[841421, 16358, 1515, 37, 25, "Input",ExpressionUUID->"4f6ec33b-2722-4715-8283-2253119f6e1c"], +Cell[842939, 16397, 29116, 632, 186, "Output",ExpressionUUID->"5be51ba2-190b-4fa2-8bc7-810e619b8875"] +}, Open ]], +Cell[CellGroupData[{ +Cell[872092, 17034, 941, 25, 25, "Input",ExpressionUUID->"c699da20-b8e1-4d8d-b830-d061605f160c"], +Cell[873036, 17061, 4455, 87, 49, "Output",ExpressionUUID->"ed5e4ad1-67a3-4c9b-a847-6f8e34d62b0a"] +}, Open ]], +Cell[CellGroupData[{ +Cell[877528, 17153, 691, 20, 25, "Input",ExpressionUUID->"a50d66f9-04d2-4491-ae90-63cb096c85d3"], +Cell[878222, 17175, 1279, 36, 37, "Output",ExpressionUUID->"5497b13c-df4a-4ed3-b151-89ef7aae2f89"] +}, Open ]], +Cell[CellGroupData[{ +Cell[879538, 17216, 2855, 74, 42, "Input",ExpressionUUID->"e5d2c2e9-65d2-42b6-87d6-57bf360d129a"], +Cell[882396, 17292, 31485, 672, 189, "Output",ExpressionUUID->"555ef3d3-fdd9-4f9d-9081-2b0e0dfca703"] +}, Open ]], +Cell[CellGroupData[{ +Cell[913918, 17969, 1276, 35, 25, "Input",ExpressionUUID->"5d1f916c-a784-49e1-8c0c-4c3c76f0c816"], +Cell[915197, 18006, 4353, 89, 55, "Output",ExpressionUUID->"223277e0-8af6-4975-880b-5908889299ea"] +}, Open ]], +Cell[CellGroupData[{ +Cell[919587, 18100, 1324, 34, 25, "Input",ExpressionUUID->"a04437e1-ad3b-4721-b631-2e920551efc0"], +Cell[920914, 18136, 4544, 90, 51, "Output",ExpressionUUID->"abb84f5c-6797-4fca-8d62-d50091887e73"] +}, Open ]], +Cell[CellGroupData[{ +Cell[925495, 18231, 2183, 59, 38, "Input",ExpressionUUID->"fe010fe0-3f0c-4ab4-be57-676536c7b785"], +Cell[927681, 18292, 14941, 336, 176, "Output",ExpressionUUID->"fa606754-516b-47c6-9393-b3cd74e781ad"] +}, Open ]] +}, Open ]] }, Open ]] } ] diff --git a/topology.tex b/topology.tex index daacab2..6570ca4 100644 --- a/topology.tex +++ b/topology.tex @@ -6,6 +6,7 @@ \usepackage[bitstream-charter]{mathdesign} \usepackage[dvipsnames]{xcolor} \usepackage{anyfontsize,authblk} +\usepackage{xfrac} % sfrac \urlstyle{sf} @@ -448,10 +449,10 @@ make use of the identity |\det A| &=\lim_{\epsilon\to0}\frac{(\det A)^2}{\sqrt{\det(A+i\epsilon I)}\sqrt{\det(A-i\epsilon I)}} \\ - &=\frac1{(2\pi)^N}\int d\bar{\pmb\eta}_1\,d\pmb\eta_1\,d\bar{\pmb\eta}_2\,d\pmb\eta_2\,d\mathbf a_+\,d\mathbf a_-\, + &=\frac1{(2\pi)^N}\int d\bar{\pmb\eta}_1\,d\pmb\eta_1\,d\bar{\pmb\eta}_2\,d\pmb\eta_2\,d\mathbf a_+\,d\mathbf a_2\, e^{ -\bar{\pmb\eta}_1^TA\pmb\eta_1-\bar{\pmb\eta}_2^TA\pmb\eta_2 - -\frac12\mathbf a_+^T(A+i\epsilon I)\mathbf a_+-\frac12\mathbf a_-^T(A-i\epsilon I)\mathbf a_- + -\frac12\mathbf a_+^T(A+i\epsilon I)\mathbf a_+-\frac12\mathbf a_2^T(A-i\epsilon I)\mathbf a_2 } \end{aligned} \end{equation} @@ -1082,18 +1083,18 @@ Starting from \eqref{eq:abs.kac-rice}, we make the substitution &\big|\det\partial\partial L(\mathbf x,\pmb\omega)\big| =\lim_{\epsilon\to0}\frac1{(2\pi)^{N+M+1}}\int d\bar{\pmb\eta}_1\,d\pmb\eta_1\,d\bar{\pmb\eta}_2\,d\pmb\eta_2\, d\bar{\pmb\gamma}_1\,d\pmb\gamma_1\,d\bar{\pmb\gamma}_2\,d\pmb\gamma_2\, - d\mathbf a_+\,d\mathbf a_-\,d\mathbf b_+\,d\mathbf b_-\, \notag \\ + d\mathbf a_1\,d\mathbf a_2\,d\mathbf b_1\,d\mathbf b_2\, \notag \\ &\qquad\times\exp\Bigg\{ - -\frac12\begin{bmatrix}\mathbf a_+^T&\mathbf b_+^T\end{bmatrix}\big(\partial\partial L(\mathbf x,\pmb\omega)+i\epsilon I\big)\begin{bmatrix}\mathbf a_+\\\mathbf b_+\end{bmatrix} - -\frac12\begin{bmatrix}\mathbf a_-^T&\mathbf b_-^T\end{bmatrix}\big(\partial\partial L(\mathbf x,\pmb\omega)-i\epsilon I\big)\begin{bmatrix}\mathbf a_-\\\mathbf b_-\end{bmatrix} + -\frac12\begin{bmatrix}\mathbf a_1^T&\mathbf b_1^T\end{bmatrix}\big(\partial\partial L(\mathbf x,\pmb\omega)+i\epsilon I\big)\begin{bmatrix}\mathbf a_1\\\mathbf b_1\end{bmatrix} + -\frac12\begin{bmatrix}\mathbf a_2^T&\mathbf b_2^T\end{bmatrix}\big(\partial\partial L(\mathbf x,\pmb\omega)-i\epsilon I\big)\begin{bmatrix}\mathbf a_2\\\mathbf b_2\end{bmatrix} \notag \\ &\hspace{6em}-\begin{bmatrix}\bar{\pmb\eta}_1^T&\bar{\pmb\gamma}_1^T\end{bmatrix}\partial\partial L(\mathbf x,\pmb\omega)\begin{bmatrix}\pmb\eta_1\\\pmb\gamma_1\end{bmatrix} -\begin{bmatrix}\bar{\pmb\eta}_2^T&\bar{\pmb\gamma}_2^T\end{bmatrix}\partial\partial L(\mathbf x,\pmb\omega)\begin{bmatrix}\pmb\eta_2\\\pmb\gamma_2\end{bmatrix} \Bigg\} \label{eq:abs.det.exp} \end{align} -where the $\mathbf a_\pm$ are in $\mathbb R^N$, the $\mathbf b_\pm$ are in -$\mathbb R^M$, and the $\pmb\eta$ and $\pmb\gamma$ are Grassmann vectors just as in +where the $\mathbf a_{\sfrac12}$ are in $\mathbb R^N$, the $\mathbf b_{\sfrac12}$ are in +$\mathbb R^M$, and the $\pmb\eta_{\sfrac12}$ and $\pmb\gamma_{\sfrac12}$ are Grassmann vectors just as in \eqref{eq:det.exp}, except with an extra copy of each. This zoo of vectors quickly becomes tiring. Thankfully, there is a way to compactly represent this calculation again using superspace vectors. @@ -1104,16 +1105,16 @@ Consider the vectors &=\mathbf x +\bar\theta_1\pmb\eta_1+\bar{\pmb\eta}_1\theta_1\bar\theta_2\theta_2 +\bar\theta_2\pmb\eta_2+\bar{\pmb\eta}_2\theta_2\bar\theta_1\theta_1 \\ - &\qquad+\frac1{\sqrt2}(\bar\theta_1\theta_2+\bar\theta_2\theta_1)\mathbf a_+ - +\frac i{\sqrt2}(\bar\theta_1\theta_1+\bar\theta_2\theta_2)\mathbf a_- + &\qquad+\frac1{\sqrt2}(\bar\theta_1\theta_2+\bar\theta_2\theta_1)\mathbf a_1 + +\frac i{\sqrt2}(\bar\theta_1\theta_1+\bar\theta_2\theta_2)\mathbf a_2 +\bar\theta_1\theta_1\bar\theta_2\theta_2i\hat{\mathbf x} \notag \\ \sigma_k(1,2) &=\omega_k +\bar\theta_1\gamma_{1k}+\bar{\gamma}_{1k}\theta_1\bar\theta_2\theta_2 +\bar\theta_2\gamma_{2k}+\bar{\gamma}_{2k}\theta_2\bar\theta_1\theta_1 \\ - &\qquad+\frac1{\sqrt2}(\bar\theta_1\theta_2+\bar\theta_2\theta_1)b_{-k} - +\frac i{\sqrt2}(\bar\theta_1\theta_1+\bar\theta_2\theta_2)b_{+k} + &\qquad+\frac1{\sqrt2}(\bar\theta_1\theta_2+\bar\theta_2\theta_1)b_{1k} + +\frac i{\sqrt2}(\bar\theta_1\theta_1+\bar\theta_2\theta_2)b_{2k} +\bar\theta_1\theta_1\bar\theta_2\theta_2\hat\omega_k \notag \end{align} @@ -1125,7 +1126,7 @@ form =\lim_{\epsilon\to0}\int d\pmb\phi\,d\pmb\sigma\,e^{ \int d1\,d2\,L(\pmb\phi(1,2),\pmb\sigma(1,2)) -\frac{i\epsilon}2 - (\|\mathbf a_+\|^2-\|\mathbf a_-\|^2+\|\mathbf b_+\|^2-\|\mathbf b_-\|^2) + (\|\mathbf a_1\|^2-\|\mathbf a_2\|^2+\|\mathbf b_1\|^2-\|\mathbf b_2\|^2) } \end{equation} Note that unlike in the derivation of the average Euler characteristic, @@ -1151,49 +1152,42 @@ Following similar steps as for the Euler characteristic, we first take the avera We once again have a Gaussian integral in the parameters inside the Lagrange multipliers $\sigma_k$ for $k=1,\ldots,M$. However, here we must expand the superfields at this stage. Before that, we introduce order parameters analogous -to before. Alongside those in \eqref{eq:ops.bos} and \eqref{eq:ops.ferm}, we also define +to before. Alongside those in \eqref{eq:ops.bos}, we have \begin{align} - A_{++}=\frac{\mathbf a_+\cdot\mathbf a_+}N + A_{ij}=\frac{\mathbf a_i\cdot\mathbf a_j}N && - A_{--}=\frac{\mathbf a_-\cdot\mathbf a_-}N + X_i=\frac{\mathbf x\cdot\mathbf a_i}N && - A_{+-}=\frac{\mathbf a_+\cdot\mathbf a_-}N - && - X_+=\frac{\mathbf x\cdot\mathbf a_+}N - && - X_-=\frac{\mathbf x\cdot\mathbf a_-}N - \\ - \hat X_+=-i\frac{\hat{\mathbf x}\cdot\mathbf a_+}N - && - \hat X_-=-i\frac{\hat{\mathbf x}\cdot\mathbf a_-}N + \hat X_i=-i\frac{\hat{\mathbf x}\cdot\mathbf a_i}N && H_{ij}=\frac{\bar{\pmb\eta}_i\cdot\pmb\eta_j}N && J=\frac{\pmb\eta_1\cdot\pmb\eta_2}N && - \bar J=\frac{\bar{\pmb\eta}_1\cdot\bar{\pmb\eta}_2}N + m_i = \frac{\mathbf x_0\cdot\mathbf a_i}N \end{align} +where the $i$ and $j$ run over $1$ and $2$. These come with a volume term in the action \begin{equation} \begin{aligned} \mathcal V=\frac12\log\det\left( \begin{bmatrix} - C & iR & X_+ & X_- \\ - iR & D & i\hat X_+ & i\hat X_- \\ - X_+ & i\hat X_+ & A_{++} & A_{+-} \\ - X_- & i\hat X_- & A_{+-} & A_{--} + C & iR & X_1 & X_2 \\ + iR & D & i\hat X_1 & i\hat X_2 \\ + X_1 & i\hat X_1 & A_{11} & A_{12} \\ + X_2 & i\hat X_2 & A_{12} & A_{22} \end{bmatrix} -\begin{bmatrix} m \\ i\hat m \\ - m_+ \\ - m_- + m_1 \\ + m_2 \end{bmatrix} \begin{bmatrix} m & i\hat m & - m_+ & - m_- + m_1 & + m_2 \end{bmatrix} \right) \qquad \\ -\frac12\log\det\begin{bmatrix} @@ -1207,9 +1201,9 @@ These come with a volume term in the action As before, we can immediately integrate out $\sigma_0$, which fixes certain of the order parameters. In particular, we find \begin{align} C=1 && - X_+=0 && - X_-=0 && - G_+=-R-\frac12(A_{++}+A_{--}) + X_1=0 && + X_2=0 && + G_+=-R-\frac12A_+ \end{align} where we have defined the symmetric and antisymmetric combinations of $G_{11}$ and $G_{22}$ \begin{align} @@ -1249,11 +1243,42 @@ and likewise a Gaussian integral in the Grassmann variables with kernel The effective action then has the form \begin{equation} \mathcal S - =-\frac\alpha2\left( + =\hat m+\frac12i\epsilon A_--\frac\alpha2\left( \log\det K-\log\det K'+V_0^2(K^{-1})_{22} \right)+\mathcal V \end{equation} - +It is not helpful to write out this entire expression, which is quite large. +However, we only find saddle points of this action with $\bar +J=J=G_{12}=G_{21}=G_-=\hat X_1=\hat X_2=m_1=m_2=A_{12}=0$. Setting these variables to zero, we find +\begin{align} + \notag + \mathcal S + =\hat m + +\frac12i\epsilon A_- + -\alpha\frac12\log\frac{ + f'(1)(Df(1)+R^2f'(1))-\frac12((R-\frac12A_+)^2+\frac12 A_-^2)f(1)f''(1) + }{ + \frac14(R+\frac12A_+)^2f'(1)^2 + } + \\ + \notag + -\alpha\frac12\log\frac{ + \epsilon^2+i\epsilon f'(1)A_-+\frac14(A_+^2-A_-^2)f'(1)^2 + }{ + \frac14(R+\frac12A_+)^2f'(1)^2 + } + +\frac12\log\frac{D(1-m^2)+R^2-2Rm\hat m+\hat m^2}{\frac14(R+\frac12A_+)^2} + \\ + +\frac12\log\frac{A_+^2-A_-^2}{(R+\frac12A_+)^2} + -\frac12\alpha V_0^2\left( + f(1)+\frac{R^2f'(1)^2}{Df'(1)-\frac12((R-\frac12A_+)^2+\frac12A_-^2)f''(1)} + \right)^{-1} +\end{align} +One solution to these equations at $\epsilon=0$ is $A_-=0$ and $A_+=2R^*$ with +$D=\hat m=0$ and $R=R^*$, exactly as for the Euler characteristic. The resulting effective +action as a function of $m$ is also exactly the same. We find two other +solutions that differ from this one, but with formulae too complex to share in +the text. One alternate solution has $A_-=0$ and one has $A_-\neq0$. \section{The quenched shattering energy in {\oldstylenums 1}\textsc{frsb} models} |