1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
|
\documentclass[submission, Phys]{SciPost}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath,latexsym,graphicx}
\usepackage[bitstream-charter]{mathdesign}
\usepackage[dvipsnames]{xcolor}
\usepackage{anyfontsize,authblk}
\urlstyle{sf}
% Fix \cal and \mathcal characters look (so it's not the same as \mathscr)
\DeclareSymbolFont{usualmathcal}{OMS}{cmsy}{m}{n}
\DeclareSymbolFontAlphabet{\mathcal}{usualmathcal}
\hypersetup{
colorlinks=true,
urlcolor={blue!50!black},
citecolor={blue!50!black},
filecolor={blue!50!black},
linkcolor={blue!50!black}
}
\title{
On the topology of solutions to random continuous constraint satisfaction problems
}
\author{Jaron Kent-Dobias\footnote{\url{jaron.kent-dobias@roma1.infn.it}}}
\affil{Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, Italy}
\begin{document}
\maketitle
\begin{abstract}
We consider the set of solutions to $M$ random polynomial equations with
independent Gaussian coefficients and a target value $V_0$ on the $(N-1)$-sphere. When solutions
exist, they form a manifold. We compute the average Euler characteristic of
this manifold in the limit of large $N$, and find different behavior
depending on the ratio $\alpha=M/N$. When $\alpha<\alpha_\text{onset}$, the
average characteristic is 2 and there is a single connected component, while
for $\alpha_\text{onset}<\alpha<\alpha_\text{shatter}$ a large connected
component coexists with many disconnected components. When
$\alpha>\alpha_\text{shatter}$ the large connected component vanishes, and the
entire manifold vanishes for $\alpha>\alpha_\text{\textsc{sat}}$. In the
limit $\alpha\to0$ there is a correspondence between this problem and the
topology of constant-energy level sets in the spherical spin glasses. We
conjecture that the energy $E_\text{shatter}$ associated with the vanishing of
the large connected component corresponds to the asymptotic limit of gradient
descent from a random initial condition.
\end{abstract}
\tableofcontents
\section{Introduction}
Constraint satisfaction problems seek configurations that simultaneously
satisfy a set of equations, and form a basis for thinking about problems as
diverse as neural networks \cite{Mezard_2009_Constraint}, granular materials
\cite{Franz_2017_Universality}, ecosystems \cite{Altieri_2019_Constraint}, and
confluent tissues \cite{Urbani_2023_A}. All but the last of these examples deal
with sets of inequalities, while the last considers a set of equality
constraints. Inequality constraints are familiar in situations like zero-cost
solutions in neural networks with ReLu activations and stable equilibrium in the
forces between physical objects. Equality constraints naturally appear in the
zero-gradient solutions to overparameterized smooth neural networks and in vertex models of tissues.
In such problems, there is great interest in characterizing structure in the
set of solutions, which can be influential in how algorithms behave when trying
to solve them \cite{Baldassi_2016_Unreasonable, Baldassi_2019_Properties,
Beneventano_2023_On}. Here, we show how \emph{topological} information about
the set of solutions can be calculated in a simple model of satisfying random
nonlinear equalities. This allows us to reason about the connectivity of this
solution set. The topological properties revealed by this calculation yield
surprising results for the well-studied spherical spin glasses, where a
topological transition thought to occur at a threshold energy $E_\text{th}$
where marginal minima are dominant is shown to occur at a different energy
$E_\text{shatter}$. We conjecture that this difference resolves an outstanding
problem in gradient descent dynamics in these systems.
We consider the problem of finding configurations $\mathbf x\in\mathbb R^N$
lying on the $(N-1)$-sphere $\|\mathbf x\|^2=N$ that simultaneously satisfy $M$
nonlinear constraints $V_k(\mathbf x)=V_0$ for $1\leq k\leq M$ and some
constant $V_0\in\mathbb R$. The nonlinear constraints are taken to be centered
Gaussian random functions with covariance
\begin{equation} \label{eq:covariance}
\overline{V_i(\mathbf x)V_j(\mathbf x')}
=\delta_{ij}f\left(\frac{\mathbf x\cdot\mathbf x'}N\right)
\end{equation}
for some choice of function $f$. When the covariance function $f$ is polynomial, the
$V_k$ are also polynomial, with a term of degree $p$ in $f$ corresponding to
all possible terms of degree $p$ in $V_k$. In particular, taking
\begin{equation}
V_k(\mathbf x)
=\sum_{p=0}^\infty\frac1{p!}\sqrt{\frac{f^{(p)}(0)}{N^p}}
\sum_{i_1\cdots i_p}^NJ^{(k,p)}_{i_1\cdots i_p}x_{i_1}\cdots x_{i_p}
\end{equation}
with the elements of the tensors $J^{(k,p)}$ as independently distributed
unit normal random variables satisfies \eqref{eq:covariance}. The size of the
series coefficients of $f$ therefore control the variances in the coefficients
of random polynomial constraints. When $M=1$, this problem corresponds to the
level set of a spherical spin glass with energy density $E=\sqrt{N}V_0$.
This problem or small variations thereof have attracted attention recently for
their resemblance to encryption, optimization, and vertex models of confluent
tissues \cite{Fyodorov_2019_A, Fyodorov_2020_Counting,
Fyodorov_2022_Optimization, Urbani_2023_A, Kamali_2023_Dynamical,
Kamali_2023_Stochastic, Urbani_2024_Statistical, Montanari_2023_Solving,
Montanari_2024_On, Kent-Dobias_2024_Conditioning, Kent-Dobias_2024_Algorithm-independent}. In each of these cases, the authors studied properties of
the cost function
\begin{equation} \label{eq:cost}
\mathscr C(\mathbf x)=\frac12\sum_{k=1}^M\big[V_k(\mathbf x)-V_0\big]^2
\end{equation}
which achieves zero only for configurations that satisfy all the constraints.
Here we dispense with the cost function and study the set of solutions
directly.
This set
can be written as
\begin{equation}
\Omega=\big\{\mathbf x\in\mathbb R^N\mid \|\mathbf x\|^2=N,V_k(\mathbf x)=V_0
\;\forall\;k=1,\ldots,M\big\}
\end{equation}
Because the constraints are all smooth functions, $\Omega$ is almost always a manifold without singular points.\footnote{The conditions for a singular point are that
$0=\frac\partial{\partial\mathbf x}V_k(\mathbf x)$ for all $k$. This is
equivalent to asking that the constraints $V_k$ all have a stationary point at
the same place. When the $V_k$ are independent and random, this is vanishingly
unlikely, requiring $NM+1$ independent equations to be simultaneously satisfied.
This means that different connected components of the set of solutions do not
intersect, nor are there self-intersections, without extraordinary fine-tuning.}
We study the topology of the manifold $\Omega$ by two related means: its
average Euler characteristic, and the average number of stationary points of a
linear height function restricted to the manifold. These measures tell us
complementary pieces of information, respectively the alternating sum and
direct sum of the Betti numbers of $\Omega$. We find that for the varied cases
we study, these two always coincide at the largest exponential order in $N$,
putting strong constraints on the resulting topology and geometry.
\section{Methods}
\subsection{The average Euler characteristic}
The Euler characteristic $\chi$ of a manifold is a topological invariant \cite{Hatcher_2002_Algebraic}. It is
perhaps most familiar in the context of connected compact orientable surfaces, where it
characterizes the number of handles in the surface: $\chi=2(1-\#)$ for $\#$
handles. For general $d$, the Euler characteristic of the $d$-sphere is $2$ if $d$ is even and 0 if $d$ is odd. The canonical method for computing the Euler characteristic is done by
defining a complex on the manifold in question, essentially a
higher-dimensional generalization of a polygonal tiling. Then $\chi$ is given
by an alternating sum over the number of cells of increasing dimension, which
for 2-manifolds corresponds to the number of vertices, minus the number of
edges, plus the number of faces.
Morse theory offers another way to compute the Euler characteristic using the
statistics of stationary points of a function $H:\Omega\to\mathbb R$ \cite{Audin_2014_Morse}. For
functions $H$ without any symmetries with respect to the manifold, the surfaces
of gradient flow between adjacent stationary points form a complex. The
alternating sum over cells to compute $\chi$ becomes an alternating sum over
the count of stationary points of $H$ with increasing index, or
\begin{equation}
\chi=\sum_{i=0}^N(-1)^i\mathcal N_H(\text{index}=i)
\end{equation}
Conveniently, we can express this abstract sum as an integral over the manifold
using a small variation on the Kac--Rice formula for counting stationary
points. Since the sign of the determinant of the Hessian matrix of $H$ at a
stationary point is equal to its index, if we count stationary points including
the sign of the determinant, we arrive at the Euler characteristic, or
\begin{equation} \label{eq:kac-rice}
\chi(\Omega)=\int_\Omega d\mathbf x\,\delta\big(\nabla H(\mathbf x)\big)\det\operatorname{Hess}H(\mathbf x)
\end{equation}
When the Kac--Rice formula is used to \emph{count} stationary points, the sign
of the determinant is a nuisance that one must take pains to preserve
\cite{Fyodorov_2004_Complexity}. Here we are correct to exclude it.
We need to choose a function $H$ for our calculation. Because $\chi$ is
a topological invariant, any choice will work so long as it does not share some
symmetry with the underlying manifold, i.e., that it $H$ satisfies the Smale condition. Because our manifold of random
constraints has no symmetries, we can take a simple height function $H(\mathbf
x)=\mathbf x_0\cdot\mathbf x$ for some $\mathbf x_0\in\mathbb R^N$ with
$\|\mathbf x_0\|^2=N$. $H$ is a height function because when $\mathbf x_0$ is
used as the polar axis, $H$ gives the height on the sphere.
We treat the integral over the implicitly defined manifold $\Omega$ using the
method of Lagrange multipliers. We introduce one multiplier $\omega_0$ to
enforce the spherical constraint and $M$ multipliers $\omega_k$ to enforce the vanishing of
each of the $V_k$, resulting in the Lagrangian
\begin{equation} \label{eq:lagrangian}
L(\mathbf x,\pmb\omega)
=H(\mathbf x)+\frac12\omega_0\big(\|\mathbf x\|^2-N\big)
+\sum_{k=1}^M\omega_k\big(V_k(\mathbf x)-V_0\big)
\end{equation}
The integral over $\Omega$ in \eqref{eq:kac-rice} then becomes
\begin{equation} \label{eq:kac-rice.lagrange}
\chi(\Omega)=\int_{\mathbb R^N} d\mathbf x\int_{\mathbb R^{M+1}}d\pmb\omega
\,\delta\big(\partial L(\mathbf x,\pmb\omega)\big)
\det\partial\partial L(\mathbf x,\pmb\omega)
\end{equation}
where $\partial=[\frac\partial{\partial\mathbf x},\frac\partial{\partial\pmb\omega}]$
is the vector of partial derivatives with respect to all $N+M+1$ variables.
This integral is now in a form where standard techniques from mean-field theory
can be applied to calculate it.
\subsubsection{Calculation of the average Euler characteristic}
To evaluate the average of $\chi$ over the constraints, we first translate the $\delta$ functions and determinant to integral form, with
\begin{align}
\delta\big(\partial L(\mathbf x,\pmb\omega)\big)
&=\int\frac{d\hat{\mathbf x}}{(2\pi)^N}\frac{d\hat{\pmb\omega}}{(2\pi)^{M+1}}
e^{i[\hat{\mathbf x},\hat{\pmb\omega}]\cdot\partial L(\mathbf x,\pmb\omega)}
\\
\det\partial\partial L(\mathbf x,\pmb\omega)
&=\int d\bar{\pmb\eta}\,d\pmb\eta\,d\bar{\pmb\gamma}\,d\pmb\gamma\,
e^{-[\bar{\pmb\eta},\bar{\pmb\gamma}]^T\partial\partial L(\mathbf x,\pmb\omega)[\pmb\eta,\pmb\gamma]}
\end{align}
where $\hat{\mathbf x}$ and $\hat{\pmb\omega}$ are ordinary vectors and
$\bar{\pmb\eta}$, $\pmb\eta$, $\bar{\pmb\gamma}$, and $\pmb\gamma$ are
Grassmann vectors. With these expressions substituted into
\eqref{eq:kac-rice.lagrange}, the result is a integral over an exponential
whose argument is linear in the random functions $V_k$. These functions can
therefore be averaged over, and the resulting expression treated with standard
methods. Details of this calculation can be found in Appendix~\ref{sec:euler}.
The result is the reduction of the average Euler characteristic to an expression of the
form
\begin{equation}
\overline{\chi(\Omega)}
=\int dR\,dD\,dm\,d\hat m\,g(R,D,m,\hat m)\,e^{N\mathcal S_\Omega(R,D,m,\hat m)}
\end{equation}
where $g$ is a prefactor subexponential in $N$, and $\mathcal S_\Omega$ is an effective action defined by
\begin{equation}
\begin{aligned}
\mathcal S_\Omega(R,D,m,\hat m\mid\alpha,V_0)
&=\hat m-\frac\alpha2\left[
\log\left(1+\frac{f(1)D}{f'(1)R^2}\right)
+\frac{V_0^2}{f(1)}\left(1+\frac{f'(1)R^2}{f(1)D}\right)^{-1}
\right] \\
&\hspace{7em}+\frac12\log\left(
1+\frac{(1-m^2)D+\hat m^2-2Rm\hat m}{R^2}
\right)
\end{aligned}
\end{equation}
The remaining order parameters defined by the scalar products
\begin{align}
R=-i\frac1N\mathbf x\cdot\hat{\mathbf x}
&&
D=\frac1N\hat{\mathbf x}\cdot\hat{\mathbf x}
&&
m=\frac1N\mathbf x\cdot\mathbf x_0
&&
\hat m=-i\frac1N\hat {\mathbf x}\cdot\mathbf x_0
\end{align}
This integral can be evaluated by a saddle point method. For reasons we will
see, it is best to extremize with respect to $R$, $D$, and $\hat m$, leaving a
new effective action of $m$ alone. This can be solved to give
\begin{equation}
D=-\frac{m+R^*(m)}{1-m^2} \qquad \hat m=0
\end{equation}
\begin{equation}
\begin{aligned}
R^*(m)
&=\frac{-m(1-m^2)}{2[f(1)-(1-m^2)f'(1)]^2}
\Bigg[
\alpha V_0^2f'(1)
+(2-\alpha)f(1)\left(\frac{f(1)}{1-m^2}-f'(1)\right) \\
&\quad+\operatorname{sgn}(m)\alpha\sqrt{
\tfrac{4V_0^2}\alpha f(1)f'(1)\left[\tfrac{f(1)}{1-m^2}-f'(1)\right]
+\left[\tfrac{f(1)^2}{1-m^2}-\big(V_0^2+f(1)\big)f'(1)\right]^2
}
\Bigg]
\end{aligned}
\end{equation}
\begin{equation}
\mathcal S_\Omega(m)
=-\frac\alpha2\bigg[
\log\left(
1-\frac{f(1)}{f'(1)}\frac{1+m/R^*}{1-m^2}
\right)
+\frac{V_0^2}{f(1)}\left(
1-\frac{f'(1)}{f(1)}\frac{1-m^2}{1+m/R^*}
\right)^{-1}
\bigg]
+\frac12\log\left(-\frac m{R^*}\right)
\end{equation}
To finish evaluating the integral, this expression should be maximized with
respect to $m$. The order parameter $m$ is both physical and interpretable, as
it gives the overlap of the configuration $\mathbf x$ with the height axis
$\mathbf x_0$. Therefore, the value $m^*$ that maximizes this action can be
understood as the latitude on the sphere where most of the contribution to the
Euler characteristic is made.
The action $\mathcal S_\Omega$ is extremized with respect to $m$ at $m^*=0$ or $m^*=-R^*$.
In the latter case, $m^*$ takes the value
\begin{equation}
m^*=\pm\sqrt{1-\frac{\alpha}{f'(1)}\big(V_0^2+f(1)\big)}
\end{equation}
and $\mathcal S_\Omega(m^*)=0$. However, when
\begin{equation}
V_0^2>V_\text{on}^2\equiv\frac{1-\alpha+\sqrt{1-\alpha}}\alpha f(1)
\end{equation}
$R^*(m^*)$ becomes complex and the solution is no longer valid. Likewise, when
\begin{equation}
V_0^2<V_\text{sh}^2\equiv\frac{2(1+\sqrt{1-\alpha})-\alpha}{\alpha}f(1)\left(1-\frac{f(1)}{f'(1)}\right)
\end{equation}
the maximum at $m=0$ becomes complex and that solution is invalid. Examples of
$\mathcal S_\Omega$ in difference regimes are shown in Fig.~\ref{fig:action}.
These transition values of the target $V_0$ correspond with transition values in $\alpha$ of
\begin{align}
\alpha_\text{on}=1-\left(\frac{V_0^2}{V_0^2+f(1)}\right)^2
&&
\alpha_\text{sh}=4V_0^2f(1)f'(1)\frac{f'(1)-f(1)}{\big((V_0^2+f(1))f'(1)-f(1)^2\big)^2}
\end{align}
\begin{figure}
\includegraphics{figs/action_1.pdf}
\hspace{-3.5em}
\includegraphics{figs/action_3.pdf}
\caption{
The effective action governing the average Euler characteristic as a function of the overlap
$m=\frac1N\mathbf x\cdot\mathbf x_0$ with the height direction for two
different homogeneous polynomial functions and a variety of target values $V_0$. In both
plots $\alpha=\frac12$. \textbf{Left:} With linear functions there are two
regimes. For small $V_0$, there are maxima at $m=\pm m^*$ where the action
is zero, while after the satisfiability transition at $V_0=V_\text{\textsc{sat}}=1$, $m^*$
goes to zero and the action becomes negative. \textbf{Right:} With nonlinear
functions there are four regimes. For small $V_0$ the behavior is the same
as in the linear case, with zero action. After an onset transition at
$V_0=V_\text{on}\simeq1.099$ the maxima are at the edge of validity of the
action and the action is positive. At a shattering transition at
$V_0=V_\text{sh}\simeq1.394$, $m^*$ goes to zero and the action is positive.
Finally, at the satisfiability transition
$V_0=V_\text{\textsc{sat}}\simeq1.440$ the action becomes negative.
} \label{fig:action}
\end{figure}
\subsubsection{How to interpret the average Euler characteristic}
It is not straightforward to directly use the average Euler characteristic to
infer something about the number of connected components in the set of
solutions. To understand why, a simple example is helpful. Consider the set of
solutions on the sphere $\|\mathbf x\|^2=N$ that satisfy the single quadratic
constraint
\begin{equation}
0=\sum_{i=1}^N\sigma_ix_i^2
\end{equation}
where each $\sigma_i$ is taken to be $\pm1$ with equal probability. If we take $\mathbf x$ to be ordered such that all terms with $\sigma_i=+1$ come first, this gives
\begin{equation}
0=\sum_{i=1}^{N_+}x_i^2-\sum_{i=N_++1}^Nx_i^2
\end{equation}
where $N_+$ is the number of terms with $\sigma_i=+1$. The topology of the resulting manifold can be found by adding and subtracting this constraint from the spherical one, which gives
\begin{align}
\frac12=\sum_{i=1}^{N_+}x_i^2
\qquad
\frac12=\sum_{i=N_++1}^{N}x_i^2
\end{align}
These are two independent equations for spheres of radius $1/\sqrt2$, one of
dimension $N_+$ and the other of dimension $N-N_+$. Therefore, the topology of
the configuration space is that of $S^{N_+-1}\times S^{N-N_+-1}$. The Euler
characteristic of a product space is the product of the Euler characteristics,
and so we have $\chi(\Omega)=\chi(S^{N_+-1})\chi(S^{N-N_+-1})$.
What is the average value of the Euler characteristic over values of
$\sigma_i$? First, recall that the Euler characteristic of a sphere $S^d$ is 2
when $d$ is even and 0 when $d$ is odd. When $N$ is odd, any value
of $N_+$ will result in one of the two spheres in the product to be
odd-dimensional, and therefore $\chi(\Omega)=0$, as is always true for
odd-dimensional manifolds. When $N$ is even, there are two possibilities: when $N_+$ is even then both spheres are odd-dimensional, while when $N_+$ is odd then both spheres are even-dimensional.
The number of terms $N_+$ with $\sigma_i=+1$ is distributed with the binomial distribution
\begin{equation}
P(N_+)=\frac1{2^N}\binom{N}{N_+}
\end{equation}
Therefore, the average Euler characteristic for even $N$ is
\begin{equation}
\overline{\chi(\Omega)}
=\sum_{N_+=0}^NP(N_+)\chi(S^{N_+-1})\chi(S^{N-N_+-1})
=\frac4{2^N}\sum_{n=0}^{N/2}\binom{N}{2n}
=2
\end{equation}
Thus we find the average Euler characteristic in this simple example is 2
despite the fact that the possible manifolds resulting from the constraints
have characteristics of either 0 or 4.
The many positive values the Euler characteristic can take is one problem, but
a larger one is the many negative values it can take. A manifold with many
handles will have a very negative Euler characteristic, and our calculation
relying on the saddle point of an exponential integral would be invalid. In the
regime of $\mathcal S_\Omega(m)$ where the action is complex-valued, is this
breakdown the result of a negative average characteristic, or is it the result
of another reason? It is difficult to answer this with the previous calculation
alone. However, in the next subsection we will make a complementary calculation
that rules out the negative Euler characteristic picture. Instead, we will see
that in the complex region, the large-deviation function in $m$ that $\mathcal
S_\Omega(m)$ represents breaks down due to the vanishingly small probability of
finding any stationary points.
\subsection{Complexity of a linear test function}
One way to definitely narrow possible interpretations of the average Euler
characteristic is to compute a complementary average. The Euler characteristic
is the alternating sum of numbers of critical points of different index. If
instead we make the direct sum
\begin{equation}
\mathcal N_H(\Omega)=\sum_{i=0}^N\mathcal N_H(\text{index}=i)
=\int_\Omega d\mathbf x\,\delta\big(\nabla H(\mathbf x)\big)
\,\big|\det\operatorname{Hess}H(\mathbf x)\big|
\end{equation}
we find the total number of stationary points. The formula is exactly the same
as that for the average Euler characteristic except for an absolute value sign
around the determinant of the Hessian.
Understanding the number of stationary points as a function of latitude $m$
will clarify the meaning of our effective action for the average Euler
characteristic. This is because the average number of stationary points is a
nonnegative number. If the region of complex $\mathcal S_\Omega$ has a
well-defined number of stationary points, it indicates that we are looking at a
situation with a negative average Euler characteristic. On the other hand, if
the average number of stationary points yields a complex value at some latitude
$m$, it must be because it is either to large or small in $N$ to be captured by
the calculation, e.g., that it behaves like $e^{N^2\Sigma}$ or
$e^{-N^2\Sigma}$. The following calculation indicates this second situation:
the region of complex action is due to a lack of stationary points to
contribute to the Euler characteristic at those latitudes.
To compute the complexity, we follow a similar procedure to the Euler
characteristic. The main difference lies in how we treat the absolute value
function around the determinant. Following \cite{Fyodorov_2004_Complexity}, we
make use of the identity
\begin{equation}
\begin{aligned}
|\det A|
&=\lim_{\epsilon\to0}\frac{(\det A)^2}{\sqrt{\det(A+i\epsilon I)}\sqrt{\det(A-i\epsilon I)}}
\\
&=\frac1{(2\pi)^N}\int d\bar{\pmb\eta}_1\,d\pmb\eta_1\,d\bar{\pmb\eta}_2\,d\pmb\eta_2\,d\mathbf a\,d\mathbf b\,
e^{
-\bar{\pmb\eta}_1^TA\pmb\eta_1-\bar{\pmb\eta}_2^TA\pmb\eta_2
-\frac12\mathbf a^T(A+i\epsilon I)\mathbf a-\frac12\mathbf b^T(A-i\epsilon I)\mathbf b
}
\end{aligned}
\end{equation}
for an $N\times N$ matrix $A$. Here $\bar{\pmb\eta}_1$, $\pmb\eta_1$,
$\bar{\pmb\eta}_2$, and $\pmb\eta_2$ are Grassmann vectors and $\mathbf a$ and
$\mathbf b$ are regular vectors. This introduces many new order parameters into
the problem, but this is a difficulty of scale rather than principle. With this
identity substituted for the usual determinant one, the problem can be solved
much as before. The details of this solution are relegated to
Appendix~\ref{sec:complexity.details}. The result is that, to largest order in
$N$, the logarithm of the average number of stationary points is the same as
the logarithm of the average Euler characteristic.
\section{Results}
\subsection{Topology of solutions to many equations and the satisfiability transition}
The results of the previous sections indicate the following picture for the
topology of the solution manifold.
\begin{figure}
\includegraphics[width=0.245\textwidth]{figs/connected.pdf}
\includegraphics[width=0.245\textwidth]{figs/coexist.pdf}
\includegraphics[width=0.245\textwidth]{figs/shattered.pdf}
\includegraphics[width=0.245\textwidth]{figs/gone.pdf}
\includegraphics{figs/bar.pdf}
\caption{
Cartoon of the topology of the solution manifold implied by our
calculation. The arrow shows the vector $\mathbf x_0$ defining the height
function. For $V_0<V_\text{on}$, the manifold has a single connected
component. Above the onset with $V_\text{on}<V_0<V_\text{sh}$, the manifold
has a large connected component around the equator, and many disconnected
pieces in a certain range of latitudes. Above the shattering transition, or
$V_\text{sh}<V_0<V_\text{\textsc{sat}}$, the large connected
component vanishes and small disconnected pieces occupy the entire equatorial
region. Finally, above the satisfiability transition
$V_\text{\textsc{sat}}$ the manifold vanishes.
} \label{fig:cartoons}
\end{figure}
\begin{figure}
\includegraphics{figs/phases_1.pdf}
\hspace{-3em}
\includegraphics{figs/phases_2.pdf}
\hspace{-3em}
\includegraphics{figs/phases_3.pdf}
\caption{
Topological phases of the model for three different homogeneous covariance
functions. The onset transition $V_\text{onset}$, shattering transition
$V_\text{shatter}$, and satisfiability transition $V_\text{\textsc{sat}}$
are indicated when they exist. In the limit of $\alpha\to0$, the behavior
of level sets of the spherical spin glasses are recovered: the final plot
shows how in the pure cubic model the ground state energy $E_\text{gs}$ and threshold energy
$E_\text{th}$ correspond with the limits of the satisfiability and
shattering transitions, respectively. Note that for mixed models with
inhomogeneous covariance functions, $E_\text{th}$ is not the lower limit of
$V_\text{sh}$.
}
\end{figure}
\subsection{Topology of level sets of the spherical spin glasses and the dynamic threshold}
As indicated earlier, for $M=1$ the solution manifold corresponds to the energy
level set of a spherical spin glass with energy density $E=\sqrt NV_0$. All the
results from the previous sections follow, and can be translated to the spin
glasses by taking the limit $\alpha\to0$ while scaling $V_0=\sqrt\alpha E$. With a little algebra this procedure yields
\begin{equation}
E_\text{onset}=\pm\sqrt{2f(1)}
\end{equation}
\begin{equation}
E_\text{shatter}=\pm\sqrt{4f(1)\left(1-\frac{f(1)}{f'(1)}\right)}
\end{equation}
for the energies at which level sets of the spherical spin glasses have
disconnected pieces appear, and that at which a large connected component
vanishes. For the pure $p$-spin spherical spin glasses with $f(q)=\frac12q^p$,
$E_\text{shatter}=\sqrt{2(p-1)/p}$, precisely the threshold energy in these
models. This is expected, since threshold energy, defined as the place where
marginal minima are dominant in the landscape, is widely understood as the
place where level sets are broken into pieces.
However, for general mixed models the threshold energy is
\begin{equation}
E_\mathrm{th}=\pm\frac{f(1)[f''(1)-f'(1)]+f'(1)^2}{f'(1)\sqrt{f''(1)}}
\end{equation}
which generally satisfies $|E_\text{shatter}|\leq|E_\text{th}|$.
\begin{figure}
\includegraphics{figs/dynamics_2.pdf}
\hspace{-0.5em}
\includegraphics{figs/dynamics_3.pdf}
\caption{
Comparison of the shattering energy $E_\text{sh}$ with the asymptotic
performance of gradient descent from a random initial condition in $p+s$
models with $p=2$ and $p=3$ and varying $s$. The values of $\lambda$ depend on $p$ and $s$ and are taken from \cite{Folena_2023_On}. The points show the asymptotic performance
extrapolated using two different methods and have unknown uncertainty, from \cite{Folena_2023_On}. Also
shown is the annealed threshold energy $E_\text{th}$, where marginal minima
are the most common type of stationary point. The section of $E_\text{sh}$
that is dashed on the left plot indicates the continuation of the annealed
result, whereas the solid portion gives the value calculated with a
{\oldstylenums 1}\textsc{frsb} ansatz.
}
\end{figure}
\section{Conclusions}
\cite{Franz_2016_The, Franz_2017_Universality, Franz_2019_Critical, Annesi_2023_Star-shaped, Baldassi_2023_Typical}
\paragraph{Acknowledgements}
The authors thank Pierfrancesco Urbani for helpful conversations on these topics.
\paragraph{Funding information}
JK-D is supported by a \textsc{DynSysMath} Specific Initiative of the INFN.
\appendix
\section{Details of the calculation of the average Euler characteristic}
\label{sec:euler}
To make the calculation compact, we introduce superspace coordinates. Define the supervectors
\begin{equation}
\pmb\phi(1)=\mathbf x+\bar\theta_1\pmb\eta+\bar{\pmb\eta}\theta_1+\bar\theta_1\theta_1i\hat{\mathbf x}
\qquad
\sigma_k(1)=\omega_k+\bar\theta_1\gamma_k+\bar\gamma_k\theta_1+\bar\theta_1\theta_1i\hat\omega_k
\end{equation}
The Euler characteristic can be expressed using these supervectors as
\begin{equation}
\begin{aligned}
&\chi(\Omega)
=\int d\pmb\phi\,d\pmb\sigma\,e^{\int d1\,L(\pmb\phi(1),\pmb\sigma(1))} \\
&=\int d\pmb\phi\,d\pmb\sigma\,\exp\left\{
\int d1\left[
H\big(\pmb\phi(1)\big)
+\frac12\sigma_0(1)\left(\|\pmb\phi(1)\|^2-N\right)
+\sum_{k=1}^M\sigma_k(1)\Big(V_k\big(\pmb\phi(1)\big)-V_0\Big)
\right]
\right\}
\end{aligned}
\end{equation}
Since this is an exponential integrand linear in the functions $V_k$, we can average over the functions to find
\begin{equation}
\begin{aligned}
\overline{\chi(\Omega)}
=\int d\pmb\phi\,d\pmb\sigma\,\exp\Bigg\{
\int d1\left[
H(\pmb\phi(1))
+\frac12\sigma_0(1)\big(\|\pmb\phi(1)\|^2-N\big)
-V_0\sum_{k=1}^M\sigma_k(1)
\right] \\
+\frac12\int d1\,d2\,\sum_{k=1}^M\sigma_k(1)\sigma_k(2)f\left(\frac{\pmb\phi(1)\cdot\pmb\phi(2)}N\right)
\Bigg\}
\end{aligned}
\end{equation}
This is a super-Gaussian integral in the Lagrange multipliers with $1\leq k\leq M$.
Performing that integral yields
\begin{equation}
\begin{aligned}
\overline{\chi(\Omega)}
&=\int d\pmb\phi\,d\sigma_0\,\exp\Bigg\{
\int d1\left[
H(\pmb\phi(1))
+\frac12\sigma_0(1)\big(\|\pmb\phi(1)\|^2-N\big)
\right] \\
&\hspace{5em}-\frac M2V_0^2\int d1\,d2\,f\left(\frac{\pmb\phi(1)\cdot\pmb\phi(2)}N\right)^{-1}
-\frac M2\log\operatorname{sdet}f\left(\frac{\pmb\phi(1)\cdot\pmb\phi(2)}N\right)
\Bigg\}
\end{aligned}
\end{equation}
The supervector $\pmb\phi$ enters this expression as a function only of the
scalar product with itself and with the vector $\mathbf x_0$ inside the
function $H$. We therefore change variables to the superoperator $\mathbb Q$ and the supervector $\mathbb M$ defined by
\begin{equation}
\mathbb Q(1,2)=\frac{\pmb\phi(1)\cdot\pmb\phi(2)}N
\qquad
\mathbb M(1)=\frac{\pmb\phi(1)\cdot\mathbf x_0}N
\end{equation}
These new variables can replace $\pmb\phi$ in the integral using a generalized Hubbard--Stratonovich transformation, which yields
\begin{equation}
\begin{aligned}
\overline{\chi(\Omega)}
&=\int d\mathbb Q\,d\mathbb M\,d\sigma_0\,
\left[g(\mathbb Q,\mathbb M)+O(N^{-1})\right]
\,\exp\Bigg\{
N\int d1\left[
\mathbb M(1)
+\frac12\sigma_0(1)\big(\mathbb Q(1,1)-1\big)
\right] \\
&\hspace{5em}-\frac M2V_0^2\int d1\,d2\,f(\mathbb Q)^{-1}(1,2)
-\frac M2\log\operatorname{sdet}f(\mathbb Q)
+\frac N2\log\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T)
\Bigg\}
\end{aligned}
\end{equation}
where $g$ is a function of $\mathbb Q$ and $\mathbb M$ independent of $N$ and
$M$, detailed in Appendix~\ref{sec:prefactor}. To move on from this expression,
we need to expand the superspace notation. We can write
\begin{equation}
\begin{aligned}
\mathbb Q(1,2)
&=C-R(\bar\theta_1\theta_1+\bar\theta_2\theta_2)
-G(\bar\theta_1\theta_2+\bar\theta_2\theta_1)
-D\bar\theta_1\theta_1\bar\theta_2\theta_2 \\
&\qquad
+(\bar\theta_1+\bar\theta_2)H
+\bar H(\theta_1+\theta_2)
-(\bar\theta_1\theta_1\bar\theta_2+\bar\theta_2\theta_2\bar\theta_1)\hat H
-\bar{\hat H}(\theta_1\bar\theta_2\theta_2+\theta_1\bar\theta_1\theta_1)
\end{aligned}
\end{equation}
and
\begin{equation}
\mathbb M(1)
=m+\bar\theta_1H_0+\bar H_0\theta_1-\hat m\bar\theta_1\theta_1
\end{equation}
The order parameters $C$, $R$, $G$, $D$, $m$, and $\hat m$ are ordinary numbers defined by
\begin{align}
C=\frac{\mathbf x\cdot\mathbf x}N
&&
R=-i\frac{\mathbf x\cdot\hat{\mathbf x}}N
&&
G=\frac{\bar{\pmb\eta}\cdot\pmb\eta}N
&&
D=\frac{\hat{\mathbf x}\cdot\hat{\mathbf x}}N
&&
m=\frac{\mathbf x_0\cdot\mathbf x}N
&&
\hat m=-i\frac{\mathbf x_0\cdot\hat{\mathbf x}}N
\end{align}
while $\bar H$, $H$, $\bar{\hat H}$, $\hat H$, $\bar H_0$ and $H_0$ are Grassmann numbers defined by
\begin{align}
\bar H=\frac{\bar{\pmb\eta}\cdot\mathbf x}N
&&
H=\frac{\pmb\eta\cdot\mathbf x}N
&&
\bar{\hat H}=\frac{\bar{\pmb\eta}\cdot\hat{\mathbf x}}N
&&
\hat H=\frac{\pmb\eta\cdot\hat{\mathbf x}}N
&&
\bar H_0=\frac{\bar{\pmb\eta}\cdot\mathbf x_0}N
&&
H_0=\frac{\pmb\eta\cdot\mathbf x_0}N
\end{align}
We can treat the integral over $\sigma_0$ immediately. It gives
\begin{equation}
\int d\sigma_0\,e^{N\int d1\,\frac12\sigma_0(1)(\mathbb Q(1,1)-1)}
=2\pi i\,\delta(C-1)\,\delta(G+R)\,\bar HH
\end{equation}
This therefore sets $C=1$ and $G=-R$ in the remainder of the integrand, as well
as setting everything depending on $\bar H$ and $H$ to zero. With these solutions inserted, the remaining remaining terms in the exponential give
\begin{equation}
\begin{aligned}
\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T)
&=1+\frac{(1-m^2)D+\hat m^2-2Rm\hat m}{R^2}
-\frac6{R^4}\bar H_0H_0\bar{\hat H}\hat H
\\
&\qquad+\frac2{R^3}\left[
(mR-\hat m)(\bar{\hat H}H_0+\bar H_0\hat H)
-(D+R^2)\bar H_0H_0
+(1-m^2)\bar{\hat H}\hat H
\right]
\end{aligned}
\end{equation}
\begin{equation}
\operatorname{sdet}f(\mathbb Q)
=1+\frac{Df(1)}{R^2f'(1)}
+\frac{2f(1)}{R^3f'(1)}\bar{\hat H}\hat H
\end{equation}
\begin{equation}
\int d1\,d2\,f(\mathbb Q)^{-1}(1,2)
=\left(f(1)+\frac{R^2f'(1)}{D}\right)^{-1}
+2\frac{Rf'(1)}{(Df(1)+R^2f'(1))^2}\bar{\hat H}\hat H
\end{equation}
\section{Calculation of the prefactor of the average Euler characteristic}
\label{sec:prefactor}
\section{Details of the calculation of the average number of stationary points}
\label{sec:complexity.details}
\begin{align}
\pmb\phi(1,2)
&=\mathbf x
+\bar\theta_1\pmb\eta_1+\bar{\pmb\eta}_1\theta_1\bar\theta_2\theta_2
+\bar\theta_2\pmb\eta_2+\bar{\pmb\eta}_2\theta_2\bar\theta_1\theta_1 \\
&\qquad+\frac1{\sqrt2}(\bar\theta_1\theta_2+\bar\theta_2\theta_1)\mathbf a
+\frac i{\sqrt2}(\bar\theta_1\theta_1+\bar\theta_2\theta_2)\mathbf b
+\bar\theta_1\theta_1\bar\theta_2\theta_2i\hat{\mathbf x}
\notag \\
\sigma_k(1,2)
&=\omega_k
+\bar\theta_1\gamma_{1k}+\bar{\gamma}_{1k}\theta_1\bar\theta_2\theta_2
+\bar\theta_2\gamma_{2k}+\bar{\gamma}_{2k}\theta_2\bar\theta_1\theta_1 \\
&\qquad+\frac1{\sqrt2}(\bar\theta_1\theta_2+\bar\theta_2\theta_1)c_k
+\frac i{\sqrt2}(\bar\theta_1\theta_1+\bar\theta_2\theta_2)d_k
+\bar\theta_1\theta_1\bar\theta_2\theta_2\hat\omega_k
\notag
\end{align}
\begin{equation}
\mathcal N_H(\Omega)
=\lim_{\epsilon\to0}\int d\pmb\phi\,d\pmb\sigma\,e^{
\int d1\,d2\,L(\pmb\phi(1,2),\pmb\sigma(1,2))
-\frac{i\epsilon}2
(\|\mathbf a\|^2-\|\mathbf b\|^2+\|\mathbf c\|^2-\|\mathbf d\|^2)
}
\end{equation}
\section{The quenched shattering energy in {\oldstylenums 1}\textsc{frsb} models}
\label{sec:1frsb}
\cite{Kent-Dobias_2023_How}
\[
\chi_0(q)=\frac1{\hat\omega_1}f''(q)^{-1/2}-\frac{r_d^2}{d_d}
\]
\[
\chi(q)=\begin{cases}
\chi_0(q) & q < q_0 \\
1-(1-m)q_1-mq & q_0 < q < q_1 \\
1-q & q > q_1
\end{cases}
\]
\[
0=\hat\omega_1r_d-\omega_1d_d
\qquad
\omega_1=\hat\omega_1\frac{r_d}{d_d}
\]
\[
\log\chi
=-\hat\omega_1 E
+\frac12\hat\omega_1^2r_d^2/d_df'(1)
+\frac12\int_0^1dq\,\left[
\hat\omega_1^2f''(q)\chi(q)
+\frac1{\chi(q)+r_d^2/d_d}
\right]
-\frac12\log r_d^2
\]
\[
0=-\frac{\hat\omega_1^2f'(1)}{d_d}+\int_0^1dq\,\frac1{(r_d^2/d_d+\chi(q))^2}
\]
\[
d_d=-\frac{1+r_d}{\int dq\,\chi(q)}r_d
\]
\bibliography{topology}
\end{document}
|