diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-05-18 18:29:28 -0300 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-05-18 18:29:28 -0300 |
commit | 2653586bab4f9519e18be93caea2dea7f891a8e6 (patch) | |
tree | 075bfe4ac5ababfb8a4bbb5ef7a9e7db9e40f9b1 | |
parent | a019e4827076b85b89a0a0f58da2bfae4927820c (diff) | |
download | code-2653586bab4f9519e18be93caea2dea7f891a8e6.tar.gz code-2653586bab4f9519e18be93caea2dea7f891a8e6.tar.bz2 code-2653586bab4f9519e18be93caea2dea7f891a8e6.zip |
Neutral refactoring, edited .gitignore
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | log-fourier.cpp | 35 | ||||
-rw-r--r-- | log-fourier.hpp | 8 | ||||
-rw-r--r-- | log-fourier_integrator.cpp | 10 |
4 files changed, 28 insertions, 26 deletions
@@ -10,3 +10,4 @@ get_energy integrator fftw.wisdom log_get_energy +log_get_energy_long diff --git a/log-fourier.cpp b/log-fourier.cpp index 1fa57c3..07429f1 100644 --- a/log-fourier.cpp +++ b/log-fourier.cpp @@ -135,14 +135,14 @@ std::string logFourierFile(std::string prefix, unsigned p, unsigned s, Real λ, return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(β) + "_" + std::to_string(log2n) + "_" + std::to_string(Δτ) + "_" + std::to_string(shift) + ".dat"; } -void logFourierSave(const std::vector<Real>& C, const std::vector<Real>& R, const std::vector<Complex>& Ct, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real k) { +void logFourierSave(const std::vector<Real>& C, const std::vector<Real>& R, const std::vector<Complex>& Ĉ, const std::vector<Complex>& Ȓ, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real k) { unsigned N = std::pow(2, log2n); std::ofstream outfile(logFourierFile("C", p, s, λ, τ₀, β, log2n, Δτ, k), std::ios::out | std::ios::binary); outfile.write((const char*)(C.data()), N * sizeof(Real)); outfile.close(); std::ofstream outfileCt(logFourierFile("Ct", p, s, λ, τ₀, β, log2n, Δτ, k), std::ios::out | std::ios::binary); - outfileCt.write((const char*)(Ct.data()), N * sizeof(Complex)); + outfileCt.write((const char*)(Ĉ.data()), N * sizeof(Complex)); outfileCt.close(); std::ofstream outfileR(logFourierFile("R", p, s, λ, τ₀, β, log2n, Δτ, k), std::ios::out | std::ios::binary); @@ -150,11 +150,11 @@ void logFourierSave(const std::vector<Real>& C, const std::vector<Real>& R, cons outfileR.close(); std::ofstream outfileRt(logFourierFile("Rt", p, s, λ, τ₀, β, log2n, Δτ, k), std::ios::out | std::ios::binary); - outfileRt.write((const char*)(Rt.data()), N * sizeof(Complex)); + outfileRt.write((const char*)(Ȓ.data()), N * sizeof(Complex)); outfileRt.close(); } -bool logFourierLoad(std::vector<Real>& C, std::vector<Real>& R, std::vector<Complex>& Ct, std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real k) { +bool logFourierLoad(std::vector<Real>& C, std::vector<Real>& R, std::vector<Complex>& Ĉ, std::vector<Complex>& Ȓ, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real k) { std::ifstream cfile(logFourierFile("C", p, s, λ, τ₀, β, log2n, Δτ, k), std::ios::binary); std::ifstream rfile(logFourierFile("R", p, s, λ, τ₀, β, log2n, Δτ, k), std::ios::binary); std::ifstream ctfile(logFourierFile("Ct", p, s, λ, τ₀, β, log2n, Δτ, k), std::ios::binary); @@ -172,33 +172,34 @@ bool logFourierLoad(std::vector<Real>& C, std::vector<Real>& R, std::vector<Comp rfile.read((char*)(R.data()), N * sizeof(Real)); rfile.close(); - ctfile.read((char*)(Ct.data()), N * sizeof(Complex)); + ctfile.read((char*)(Ĉ.data()), N * sizeof(Complex)); ctfile.close(); - rtfile.read((char*)(Rt.data()), N * sizeof(Complex)); + rtfile.read((char*)(Ȓ.data()), N * sizeof(Complex)); rtfile.close(); return true; } -std::tuple<std::vector<Complex>, std::vector<Complex>> RddfCtdfCt(LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ) { - std::vector<Real> dfC(C.size()); - std::vector<Real> RddfC(C.size()); +std::tuple<std::vector<Complex>, std::vector<Complex>> ΣD(LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, Real β, unsigned p, unsigned s, Real λ) { + std::vector<Real> D(C.size()); + std::vector<Real> Σ(C.size()); + Real β² = std::pow(β, 2); for (unsigned n = 0; n < C.size(); n++) { - RddfC[n] = R[n] * ddf(λ, p, s, C[n]); - dfC[n] = df(λ, p, s, C[n]); + D[n] = β² * df(λ, p, s, C[n]); + Σ[n] = β² * R[n] * ddf(λ, p, s, C[n]); } - std::vector<Complex> RddfCt = fft.fourier(RddfC, false); - std::vector<Complex> dfCt = fft.fourier(dfC, true); + std::vector<Complex> Σhat = fft.fourier(Σ, false); + std::vector<Complex> Dhat = fft.fourier(D, true); - return {RddfCt, dfCt}; + return {Σhat, Dhat}; } -Real estimateZ(LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ct, const std::vector<Real>& R, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real β) { - auto [RddfCt, dfCt] = RddfCtdfCt(fft, C, R, p, s, λ); +Real estimateZ(LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ĉ, const std::vector<Real>& R, const std::vector<Complex>& Ȓ, unsigned p, unsigned s, Real λ, Real τ₀, Real β) { + auto [Σhat, Dhat] = ΣD(fft, C, R, β, p, s, λ); Real Γ₀ = 1.0; - return ((2 * Γ₀ * std::conj(Rt[0]) + std::pow(β, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real(); + return (((2 * Γ₀ + Dhat[0]) * std::conj(Ȓ[0]) + Σhat[0] * Ĉ[0]) / Ĉ[0]).real(); } Real energy(const LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ, Real β) { diff --git a/log-fourier.hpp b/log-fourier.hpp index 29717cd..5651ddb 100644 --- a/log-fourier.hpp +++ b/log-fourier.hpp @@ -42,13 +42,13 @@ public: std::string logFourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real shift); -void logFourierSave(const std::vector<Real>& C, const std::vector<Real>& R, const std::vector<Complex>& Ct, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real shift); +void logFourierSave(const std::vector<Real>& C, const std::vector<Real>& R, const std::vector<Complex>& Ĉ, const std::vector<Complex>& Ȓ, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real shift); -bool logFourierLoad(std::vector<Real>& C, std::vector<Real>& R, std::vector<Complex>& Ct, std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real shift); +bool logFourierLoad(std::vector<Real>& C, std::vector<Real>& R, std::vector<Complex>& Ĉ, std::vector<Complex>& Ȓ, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real shift); -std::tuple<std::vector<Complex>, std::vector<Complex>> RddfCtdfCt(LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ); +std::tuple<std::vector<Complex>, std::vector<Complex>> ΣD(LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, Real β, unsigned p, unsigned s, Real λ); -Real estimateZ(LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ct, const std::vector<Real>& R, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real β); +Real estimateZ(LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ĉ, const std::vector<Real>& Ȓ, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real β); Real energy(const LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ, Real β); diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp index 4490b71..f2a88c2 100644 --- a/log-fourier_integrator.cpp +++ b/log-fourier_integrator.cpp @@ -143,7 +143,7 @@ int main(int argc, char* argv[]) { Real ΔCₜ = 100; Real ΔCₜ₋₁ = 101; while (ΔCₜ > ε) { - auto [RddfCt, dfCt] = RddfCtdfCt(fft, Cₜ, Rₜ, p, s, λ); + auto [Σ, D] = ΣD(fft, Cₜ, Rₜ, β, p, s, λ); std::vector<Complex> Ĉₜ₊₁(N); std::vector<Complex> Ȓₜ₊₁(N); @@ -154,7 +154,7 @@ int main(int argc, char* argv[]) { while (std::abs(C₀ - 1) > ε) { for (unsigned n = 0; n < N; n++) { - Ĉₜ₊₁[n] = ((2 * Γ[n] * std::conj(Ȓₜ[n]) + std::pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + II * fft.ν(n))).real(); + Ĉₜ₊₁[n] = (((2 * Γ[n] + D[n]) * std::conj(Ȓₜ[n]) + Σ[n] * Ĉₜ[n]) / (μₜ + II * fft.ν(n))).real(); } C₀ = C0(fft, Ĉₜ₊₁); if (C₀ > 1) { @@ -171,13 +171,13 @@ int main(int argc, char* argv[]) { ΔCₜ = 0; for (unsigned n = 0; n < N; n++) { - ΔCₜ += std::norm((2 * Γ[n] * std::conj(Ȓₜ[n]) + std::pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) - Ĉₜ[n] * (μₜ + II * fft.ν(n))); - ΔCₜ += std::norm(((Real)1.0 + std::pow(β, 2) * RddfCt[n] * Ȓₜ[n]) - Ȓₜ[n] * (μₜ + II * fft.ν(n))); + ΔCₜ += std::norm(((2 * Γ[n] + D[n]) * std::conj(Ȓₜ[n]) + Σ[n] * Ĉₜ[n]) - Ĉₜ[n] * (μₜ + II * fft.ν(n))); + ΔCₜ += std::norm(((Real)1.0 + Σ[n] * Ȓₜ[n]) - Ȓₜ[n] * (μₜ + II * fft.ν(n))); } ΔCₜ = sqrt(ΔCₜ) / (2*N); for (unsigned n = 0; n < N; n++) { - Ȓₜ₊₁[n] = ((Real)1.0 + std::pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μₜ + II * fft.ν(n)); + Ȓₜ₊₁[n] = ((Real)1.0 + Σ[n] * Ȓₜ[n]) / (μₜ + II * fft.ν(n)); } std::vector<Real> Cₜ₊₁ = fft.inverse(Ĉₜ₊₁); |