summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2025-05-08 07:24:33 -0300
committerJaron Kent-Dobias <jaron@kent-dobias.com>2025-05-08 07:24:33 -0300
commit5fd9866479ec50051d2c9eeb4e217e9376e6f9b4 (patch)
tree30a96ad32a8cc89120e2ae2938b865af2d33a08f
parente3f311a91b9684924262108a4e0c8e934f5d1d70 (diff)
downloadcode-5fd9866479ec50051d2c9eeb4e217e9376e6f9b4.tar.gz
code-5fd9866479ec50051d2c9eeb4e217e9376e6f9b4.tar.bz2
code-5fd9866479ec50051d2c9eeb4e217e9376e6f9b4.zip
Made log-Fourier padding symmetric, and began writing regular integrator
-rw-r--r--log-fourier.cpp8
-rw-r--r--log_integrator.cpp219
2 files changed, 227 insertions, 0 deletions
diff --git a/log-fourier.cpp b/log-fourier.cpp
index 9ae70be..9d1f2cb 100644
--- a/log-fourier.cpp
+++ b/log-fourier.cpp
@@ -64,6 +64,8 @@ std::vector<Complex> LogarithmicFourierTransform::fourier(const std::vector<Real
for (unsigned n = 0; n < pad*N; n++) {
if (n < N) {
a[n] = c[n] * exp((1 - k) * τ(n));
+ } else if (n >= (pad - 1) * N) {
+ a[n] = c[pad*N-n-1] * exp((1 - k) * τ(pad*N-n-1));
} else {
a[n] = 0;
}
@@ -92,6 +94,12 @@ std::vector<Real> LogarithmicFourierTransform::inverse(const std::vector<Complex
} else {
a[n] = ĉ[n] * std::exp((1 - k) * ω(n));
}
+ } else if (n >= (pad - 1) * N) {
+ if (σ < 0) {
+ a[n] = ĉ[pad*N-n-1] * std::exp((1 - k) * ω(pad*N-n-1));
+ } else {
+ a[n] = std::conj(ĉ[pad*N-n-1]) * std::exp((1 - k) * ω(pad*N-n-1));
+ }
} else {
a[n] = 0;
}
diff --git a/log_integrator.cpp b/log_integrator.cpp
new file mode 100644
index 0000000..a8d9778
--- /dev/null
+++ b/log_integrator.cpp
@@ -0,0 +1,219 @@
+#include "log-fourier.hpp"
+#include "p-spin.hpp"
+#include <getopt.h>
+#include <iostream>
+
+int main(int argc, char* argv[]) {
+ /* Model parameters */
+ unsigned p = 2;
+ unsigned s = 2;
+ Real λ = 0.5;
+ Real τ₀ = 0;
+
+ /* Log-Fourier parameters */
+ unsigned log2n = 8;
+ Real Δτ = 0.1;
+ Real k = 0.1;
+
+ /* Iteration parameters */
+ Real ε = 1e-14;
+ Real γ₀ = 1;
+ Real x = 0.5;
+ Real β₀ = 0;
+ Real βₘₐₓ = 0.7;
+ Real Δβ = 0.01;
+ bool loadData = false;
+ unsigned stepsToRespond = 1000;
+ unsigned pad = 4;
+
+ int opt;
+
+ while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:e:0:lS:x:P:")) != -1) {
+ switch (opt) {
+ case 'p':
+ p = atoi(optarg);
+ break;
+ case 's':
+ s = atoi(optarg);
+ break;
+ case '2':
+ log2n = atoi(optarg);
+ break;
+ case 't':
+ τ₀ = atof(optarg);
+ break;
+ case 'b':
+ βₘₐₓ = atof(optarg);
+ break;
+ case 'd':
+ Δβ = atof(optarg);
+ break;
+ case 'g':
+ γ₀ = atof(optarg);
+ break;
+ case 'k':
+ k = atof(optarg);
+ break;
+ case 'D':
+ Δτ = atof(optarg);
+ break;
+ case 'e':
+ ε = atof(optarg);
+ break;
+ case '0':
+ β₀ = atof(optarg);
+ break;
+ case 'x':
+ x = atof(optarg);
+ break;
+ case 'P':
+ pad = atoi(optarg);
+ break;
+ case 'l':
+ loadData = true;
+ break;
+ case 'S':
+ stepsToRespond = atoi(optarg);
+ break;
+ default:
+ exit(1);
+ }
+ }
+
+ unsigned N = pow(2, log2n);
+
+ LogarithmicFourierTransform fft(N, k, Δτ, pad);
+
+ Real Γ₀ = 1;
+ Real μₜ₋₁ = Γ₀;
+ if (τ₀ > 0) {
+ μₜ₋₁ = (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀);
+ }
+
+ std::vector<Real> Cₜ₋₁(N);
+ std::vector<Real> Rₜ₋₁(N);
+ std::vector<Complex> Ĉₜ₋₁(N);
+ std::vector<Complex> Ȓₜ₋₁(N);
+
+ if (!loadData) {
+ /* Start from the exact solution for β = 0 */
+ for (unsigned n = 0; n < N; n++) {
+ if (τ₀ > 0) {
+ if (τ₀ == 2) {
+ Cₜ₋₁[n] = Γ₀ * exp(-fft.t(n) / 2) * (1 + fft.t(n) / 2);
+ } else {
+ Cₜ₋₁[n] = Γ₀ * (exp(-μₜ₋₁ * fft.t(n)) - μₜ₋₁ * τ₀ * exp(-fft.t(n) / τ₀)) / (μₜ₋₁ - pow(μₜ₋₁, 3) * pow(τ₀, 2));
+ }
+ } else {
+ Cₜ₋₁[n] = Γ₀ * exp(-μₜ₋₁ * fft.t(n)) / μₜ₋₁;
+ }
+ Rₜ₋₁[n] = exp(-μₜ₋₁ * fft.t(n));
+
+ Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μₜ₋₁, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2));
+ Ȓₜ₋₁[n] = (Real)1.0 / (μₜ₋₁ + II * fft.ν(n));
+ }
+ } else {
+ logFourierLoad(Cₜ₋₁, Rₜ₋₁, Ĉₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀, log2n, Δτ, k);
+ μₜ₋₁ = estimateZ(fft, Cₜ₋₁, Ĉₜ₋₁, Rₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀);
+ }
+
+ std::vector<Real> Cₜ = Cₜ₋₁;
+ std::vector<Real> Rₜ = Rₜ₋₁;
+ std::vector<Complex> Ĉₜ = Ĉₜ₋₁;
+ std::vector<Complex> Ȓₜ = Ȓₜ₋₁;
+ Real μₜ = μₜ₋₁;
+
+ Real β = β₀ + Δβ;
+ while (β < βₘₐₓ) {
+ Real γ = γ₀;
+ Real ΔCmin = 1000;
+ Real ΔCₜ = 100;
+ unsigned stepsUp = 0;
+ while (ΔCₜ > ε) {
+ std::vector<Real> RddfC(N);
+ std::vector<Real> dfC(N);
+ for (unsigned i = 0; i < N; i++) {
+ RddfC[i] = Rₜ[i] * ddf(λ, p, s, Cₜ[i]);
+ dfC[i] = df(λ, p, s, Cₜ[i]);
+ }
+
+ std::vector<Real> dC(N);
+ std::vector<Real> dR(N);
+
+ for (unsigned i = 0; i < N; i++) {
+ dC[i] += -μₜ * Cₜ[i];
+ Real ΓR;
+ for (unsigned j = 0; j < N; j++) {
+
+ }
+ }
+
+
+ std::vector<Complex> Ĉₜ₊₁(N);
+ std::vector<Complex> Ȓₜ₊₁(N);
+ for (unsigned n = 0; n < N; n++) {
+ Ȓₜ₊₁[n] = ((Real)1.0 + std::pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μₜ + II * fft.ν(n));
+ Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + std::pow(τ₀ * fft.ν(n), 2)) + std::pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + II * fft.ν(n));
+ }
+ std::vector<Real> Rₜ₊₁ = fft.inverse(Ȓₜ₊₁);
+ std::vector<Real> Cₜ₊₁ = fft.inverse(Ĉₜ₊₁);
+
+ μₜ *= pow(tanh(Cₜ₊₁[0]-1)+1, x);
+
+ ΔCₜ = 0;
+ for (unsigned i = 0; i < N; i++) {
+ ΔCₜ += std::norm(Cₜ[i] - Cₜ₊₁[i]);
+ ΔCₜ += std::norm(Rₜ[i] - Rₜ₊₁[i]);
+ }
+ ΔCₜ = sqrt(ΔCₜ) / (2*N);
+
+ if (ΔCₜ < 0.9 * ΔCmin) {
+ ΔCmin = ΔCₜ;
+ stepsUp = 0;
+ } else {
+ stepsUp++;
+ }
+
+ if (stepsUp > stepsToRespond) {
+ γ = std::max(γ/2, (Real)1e-4);
+ stepsUp = 0;
+ ΔCmin = ΔCₜ;
+ }
+
+ for (unsigned i = 0; i < N; i++) {
+ Cₜ[i] += γ * (Cₜ₊₁[i] - Cₜ[i]);
+ Rₜ[i] += γ * (Rₜ₊₁[i] - Rₜ[i]);
+ Ĉₜ[i] += γ * (Ĉₜ₊₁[i] - Ĉₜ[i]);
+ Ȓₜ[i] += γ * (Ȓₜ₊₁[i] - Ȓₜ[i]);
+ }
+
+ std::cerr << "\x1b[2K" << "\r";
+ std::cerr << β << " " << μₜ << " " << ΔCₜ << " " << γ << " " << Cₜ[0];
+ }
+
+ if (std::isnan(Cₜ[0])) {
+ γ₀ /= 2;
+ Cₜ = Cₜ₋₁;
+ Rₜ = Rₜ₋₁;
+ Ĉₜ = Ĉₜ₋₁;
+ Ȓₜ = Ȓₜ₋₁;
+ μₜ = μₜ₋₁;
+ } else {
+ Real E = energy(fft, Cₜ, Rₜ, p, s, λ, β);
+
+ std::cerr << "\x1b[2K" << "\r";
+ std::cerr << β << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl;
+
+ logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, k);
+
+ β += Δβ;
+ Cₜ₋₁ = Cₜ;
+ Rₜ₋₁ = Rₜ;
+ Ĉₜ₋₁ = Ĉₜ;
+ Ȓₜ₋₁ = Ȓₜ;
+ μₜ₋₁ = μₜ;
+ }
+ }
+
+ return 0;
+}