diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-05-08 18:11:35 -0300 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-05-08 18:11:35 -0300 |
commit | 73f4eaba3a08a5e1b85512868c3916c7fd4e4571 (patch) | |
tree | 999ceaa31419e37590309e3ccb4a8e9ec0a9c536 | |
parent | 21a99431f02e799de9a811f9f02ad006fe27df6d (diff) | |
download | code-73f4eaba3a08a5e1b85512868c3916c7fd4e4571.tar.gz code-73f4eaba3a08a5e1b85512868c3916c7fd4e4571.tar.bz2 code-73f4eaba3a08a5e1b85512868c3916c7fd4e4571.zip |
Updated to work with shift
-rw-r--r-- | log-fourier.cpp | 16 | ||||
-rw-r--r-- | log-fourier.hpp | 2 | ||||
-rw-r--r-- | log-fourier_integrator.cpp | 22 | ||||
-rw-r--r-- | log_get_energy.cpp | 11 |
4 files changed, 30 insertions, 21 deletions
diff --git a/log-fourier.cpp b/log-fourier.cpp index 2e93e87..5b5955a 100644 --- a/log-fourier.cpp +++ b/log-fourier.cpp @@ -4,9 +4,9 @@ #include <fstream> #include <types.hpp> -LogarithmicFourierTransform::LogarithmicFourierTransform(unsigned N, Real k, Real Δτ, unsigned pad) : N(N), pad(pad), k(k), Δτ(Δτ) { - τₛ = -0.5 * N; - ωₛ = -0.5 * N; +LogarithmicFourierTransform::LogarithmicFourierTransform(unsigned N, Real k, Real Δτ, unsigned pad, Real shift) : N(N), pad(pad), k(k), Δτ(Δτ) { + τₛ = -shift * N; + ωₛ = -(1-shift) * N; sₛ = -0.5 * pad * N; a = reinterpret_cast<Complex*>(FFTW_ALLOC_COMPLEX(pad*N)); â = reinterpret_cast<Complex*>(FFTW_ALLOC_COMPLEX(pad*N)); @@ -70,7 +70,7 @@ std::vector<Complex> LogarithmicFourierTransform::fourier(const std::vector<Real } FFTW_EXECUTE(a_to_â); for (unsigned n = 0; n < pad*N; n++) { - â[(pad*N / 2 + n) % (pad*N)] *= std::pow(II * σ, II * s(n) - k) * Γ(k - II * s(n)); + â[(pad*N / 2 + n) % (pad*N)] *= std::exp(II*(0.5 * N + τₛ) * s(n) / Δτ) * std::pow(II * σ, II * s(n) - k) * Γ(k - II * s(n)); } FFTW_EXECUTE(â_to_a); for (unsigned n = 0; n < N; n++) { @@ -98,7 +98,7 @@ std::vector<Real> LogarithmicFourierTransform::inverse(const std::vector<Complex } FFTW_EXECUTE(a_to_â); for (unsigned n = 0; n < pad*N; n++) { - â[(pad*N / 2 + n) % (pad*N)] *= std::pow(-II * σ, II * s(n) - k) * Γ(k - II * s(n)); + â[(pad*N / 2 + n) % (pad*N)] *= std::exp(-II*(0.5 * N + τₛ) * s(n) / Δτ) * std::pow(-II * σ, II * s(n) - k) * Γ(k - II * s(n)); } FFTW_EXECUTE(â_to_a); for (unsigned n = 0; n < N; n++) { @@ -113,8 +113,8 @@ std::vector<Real> LogarithmicFourierTransform::inverse(const std::vector<Complex return c; } -std::string logFourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real k) { - return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(β) + "_" + std::to_string(log2n) + "_" + std::to_string(Δτ) + "_" + std::to_string(k) + ".dat"; +std::string logFourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real shift) { + return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(β) + "_" + std::to_string(log2n) + "_" + std::to_string(Δτ) + "_" + std::to_string(shift) + ".dat"; } void logFourierSave(const std::vector<Real>& C, const std::vector<Real>& R, const std::vector<Complex>& Ct, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real k) { @@ -184,7 +184,7 @@ Real estimateZ(LogarithmicFourierTransform& fft, const std::vector<Real>& C, con } Real energy(const LogarithmicFourierTransform& fft, std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ, Real β) { - Real E = 0; + Real E = fft.t(0) * (df(λ, p, s, 1) + R[0] * df(λ, p, s, C[0])) / 2; for (unsigned n = 0; n < C.size()/2-1; n++) { Real h₂ₙ = fft.t(2*n+1) - fft.t(2*n); Real h₂ₙ₊₁ = fft.t(2*n+2) - fft.t(2*n+1); diff --git a/log-fourier.hpp b/log-fourier.hpp index f0b53ef..b1e4bd1 100644 --- a/log-fourier.hpp +++ b/log-fourier.hpp @@ -21,7 +21,7 @@ private: Real ωₛ; Real sₛ; public: - LogarithmicFourierTransform(unsigned N, Real k, Real Δτ, unsigned pad = 4); + LogarithmicFourierTransform(unsigned N, Real k, Real Δτ, unsigned pad = 4, Real shift = 0.5); ~LogarithmicFourierTransform(); Real τ(unsigned n) const; Real ω(unsigned n) const; diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp index 55f358a..44ccce1 100644 --- a/log-fourier_integrator.cpp +++ b/log-fourier_integrator.cpp @@ -12,22 +12,23 @@ int main(int argc, char* argv[]) { /* Log-Fourier parameters */ unsigned log2n = 8; Real Δτ = 0.1; - Real k = 0.1; + Real k = -0.01; + Real shift = 0.4; /* Iteration parameters */ - Real ε = 1e-14; + Real ε = 1e-15; Real γ₀ = 1; - Real x = 0.5; + Real x = 1; Real β₀ = 0; - Real βₘₐₓ = 0.7; + Real βₘₐₓ = 20; Real Δβ = 0.01; bool loadData = false; - unsigned stepsToRespond = 1000; - unsigned pad = 4; + unsigned stepsToRespond = 1e7; + unsigned pad = 2; int opt; - while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:e:0:lS:x:P:")) != -1) { + while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:e:0:lS:x:P:h:")) != -1) { switch (opt) { case 'p': p = atoi(optarg); @@ -56,6 +57,9 @@ int main(int argc, char* argv[]) { case 'D': Δτ = atof(optarg); break; + case 'h': + shift = atof(optarg); + break; case 'e': ε = atof(optarg); break; @@ -81,7 +85,7 @@ int main(int argc, char* argv[]) { unsigned N = pow(2, log2n); - LogarithmicFourierTransform fft(N, k, Δτ, pad); + LogarithmicFourierTransform fft(N, k, Δτ, pad, shift); Real Γ₀ = 1; Real μₜ₋₁ = Γ₀; @@ -186,7 +190,7 @@ int main(int argc, char* argv[]) { std::cerr << "\x1b[2K" << "\r"; std::cerr << β << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl; - logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, k); + logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, shift); β += Δβ; Cₜ₋₁ = Cₜ; diff --git a/log_get_energy.cpp b/log_get_energy.cpp index ae17f6f..b01034c 100644 --- a/log_get_energy.cpp +++ b/log_get_energy.cpp @@ -15,6 +15,8 @@ int main(int argc, char* argv[]) { unsigned log2n = 8; Real Δτ = 0.1; Real k = 0.1; + unsigned pad = 2; + Real shift = 0.5; /* Iteration parameters */ Real β₀ = 0; @@ -23,7 +25,7 @@ int main(int argc, char* argv[]) { int opt; - while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:k:D:0:")) != -1) { + while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:k:D:0:h:")) != -1) { switch (opt) { case 'p': p = atoi(optarg); @@ -46,6 +48,9 @@ int main(int argc, char* argv[]) { case 'k': k = atof(optarg); break; + case 'h': + shift = atof(optarg); + break; case 'D': Δτ = atof(optarg); break; @@ -59,7 +64,7 @@ int main(int argc, char* argv[]) { unsigned N = pow(2, log2n); - LogarithmicFourierTransform fft(N, k, Δτ, 4); + LogarithmicFourierTransform fft(N, k, Δτ, pad, shift); std::vector<Real> C(N); std::vector<Real> R(N); @@ -71,7 +76,7 @@ int main(int argc, char* argv[]) { std::cout << std::setprecision(16); while (β += Δβ, β <= βₘₐₓ) { - if (logFourierLoad(C, R, Ct, Rt, p, s, λ, τ₀, β, log2n, Δτ, k)) { + if (logFourierLoad(C, R, Ct, Rt, p, s, λ, τ₀, β, log2n, Δτ, shift)) { Real e = energy(fft, C, R, p, s, λ, β); |