diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-04-18 23:02:43 -0300 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-04-18 23:02:43 -0300 |
commit | e4ab12ce914b2471355a99943b58c5b274d8754c (patch) | |
tree | ce730c80936dba6ed4ac82e210cd5b7faddbc258 /fourier.cpp | |
parent | 92bd43e33e79a7d682267d3f6054e8b1dd9d00db (diff) | |
download | code-e4ab12ce914b2471355a99943b58c5b274d8754c.tar.gz code-e4ab12ce914b2471355a99943b58c5b274d8754c.tar.bz2 code-e4ab12ce914b2471355a99943b58c5b274d8754c.zip |
Refactor
Diffstat (limited to 'fourier.cpp')
-rw-r--r-- | fourier.cpp | 125 |
1 files changed, 1 insertions, 124 deletions
diff --git a/fourier.cpp b/fourier.cpp index 15cad52..95d0025 100644 --- a/fourier.cpp +++ b/fourier.cpp @@ -1,30 +1,7 @@ #include "fourier.hpp" +#include "p-spin.hpp" #include <fftw3.h> -inline Real fP(unsigned p, Real q) { - return 0.5 * pow(q, p); -} - -inline Real dfP(unsigned p, Real q) { - return 0.5 * p * pow(q, p - 1); -} - -inline Real ddfP(unsigned p, Real q) { - return 0.5 * p * (p - 1) * pow(q, p - 2); -} - -Real f(Real λ, unsigned p, unsigned s, Real q) { - return (1 - λ) * fP(p, q) + λ * fP(s, q); -} - -Real df(Real λ, unsigned p, unsigned s, Real q) { - return (1 - λ) * dfP(p, q) + λ * dfP(s, q); -} - -Real ddf(Real λ, unsigned p, unsigned s, Real q) { - return (1 - λ) * ddfP(p, q) + λ * ddfP(s, q); -} - FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : n(n), Δω(Δω), Δτ(Δτ) { a = fftw_alloc_real(2 * n); â = reinterpret_cast<Complex*>(fftw_alloc_complex(n + 1)); @@ -100,106 +77,6 @@ void FourierTransform::writeToA(unsigned i, Real ai) { a[i] = ai; } -LogarithmicFourierTransform::LogarithmicFourierTransform(unsigned N, Real k, Real Δτ, unsigned pad) : N(N), pad(pad), k(k), Δτ(Δτ) { - τₛ = -0.5 * N; - ωₛ = -0.5 * N; - sₛ = -0.5 * pad * N; - a = reinterpret_cast<Complex*>(fftw_alloc_complex(pad*N)); - â = reinterpret_cast<Complex*>(fftw_alloc_complex(pad*N)); - fftw_import_wisdom_from_filename("fftw.wisdom"); - a_to_â = fftw_plan_dft_1d(pad*N, reinterpret_cast<fftw_complex*>(a), reinterpret_cast<fftw_complex*>(â), FFTW_BACKWARD, 0); - â_to_a = fftw_plan_dft_1d(pad*N, reinterpret_cast<fftw_complex*>(â), reinterpret_cast<fftw_complex*>(a), FFTW_BACKWARD, 0); - fftw_export_wisdom_to_filename("fftw.wisdom"); -} - -LogarithmicFourierTransform::~LogarithmicFourierTransform() { - fftw_destroy_plan(a_to_â); - fftw_destroy_plan(â_to_a); - fftw_free(a); - fftw_free(â); - fftw_cleanup(); -} - -Real LogarithmicFourierTransform::τ(unsigned n) const { - return Δτ * (n + τₛ); -} - -Real LogarithmicFourierTransform::ω(unsigned n) const { - return Δτ * (n + ωₛ); -} - -Real LogarithmicFourierTransform::s(unsigned n) const { - return (n + sₛ) * 2*M_PI / (pad * N * Δτ); -} - -Real LogarithmicFourierTransform::t(unsigned n) const { - return exp(τ(n)); -} - -Real LogarithmicFourierTransform::ν(unsigned n) const { - return exp(ω(n)); -} - -Complex gamma(Complex z) { - gsl_sf_result logΓ; - gsl_sf_result argΓ; - - gsl_sf_lngamma_complex_e(z.real(), z.imag(), &logΓ, &argΓ); - - return exp(logΓ.val + 1i * argΓ.val); -} - -std::vector<Complex> LogarithmicFourierTransform::fourier(const std::vector<Real>& c, bool symmetric) { - std::vector<Complex> ĉ(N); - std::vector<Real> σs = {1}; - if (symmetric){ - σs.push_back(-1); - } - for (Real σ : σs) { - for (unsigned n = 0; n < pad*N; n++) { - if (n < N) { - a[n] = c[n] * exp((1 - k) * τ(n)); - } else { - a[n] = 0; - } - } - fftw_execute(a_to_â); - for (unsigned n = 0; n < pad*N; n++) { - â[(pad*N / 2 + n) % (pad*N)] *= pow(1i * σ, 1i * s(n) - k) * gamma(k - 1i * s(n)); - } - fftw_execute(â_to_a); - for (unsigned n = 0; n < N; n++) { - ĉ[n] += exp(-k * ω(n)) * a[(pad - 1)*N+n] / (Real)(pad*N); - } - } - - return ĉ; -} - -std::vector<Real> LogarithmicFourierTransform::inverse(const std::vector<Complex>& ĉ) { - std::vector<Real> c(N); - std::vector<Real> σs = {1, -1}; - for (Real σ : σs) { - for (unsigned n = 0; n < pad * N; n++) { - if (n < N) { - a[n] = ĉ[n] * exp((1 - k) * ω(n)); - } else { - a[n] = 0; - } - } - fftw_execute(a_to_â); - for (unsigned n = 0; n < pad*N; n++) { - â[(pad*N / 2 + n) % (pad*N)] *= pow(-1i * σ, 1i * s(n) - k) * gamma(k - 1i * s(n)); - } - fftw_execute(â_to_a); - for (unsigned n = 0; n < N; n++) { - c[n] += exp(-k * τ(n)) * a[(pad - 1)*N+n].real() / (Real)(pad*N) / (2 * M_PI); - } - } - - return c; -} - std::string fourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real y, unsigned log2n, Real τₘₐₓ) { return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(y) + "_" + std::to_string(log2n) + "_" + std::to_string(τₘₐₓ) + ".dat"; } |