summaryrefslogtreecommitdiff
path: root/fourier.cpp
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2025-04-18 23:02:43 -0300
committerJaron Kent-Dobias <jaron@kent-dobias.com>2025-04-18 23:02:43 -0300
commite4ab12ce914b2471355a99943b58c5b274d8754c (patch)
treece730c80936dba6ed4ac82e210cd5b7faddbc258 /fourier.cpp
parent92bd43e33e79a7d682267d3f6054e8b1dd9d00db (diff)
downloadcode-e4ab12ce914b2471355a99943b58c5b274d8754c.tar.gz
code-e4ab12ce914b2471355a99943b58c5b274d8754c.tar.bz2
code-e4ab12ce914b2471355a99943b58c5b274d8754c.zip
Refactor
Diffstat (limited to 'fourier.cpp')
-rw-r--r--fourier.cpp125
1 files changed, 1 insertions, 124 deletions
diff --git a/fourier.cpp b/fourier.cpp
index 15cad52..95d0025 100644
--- a/fourier.cpp
+++ b/fourier.cpp
@@ -1,30 +1,7 @@
#include "fourier.hpp"
+#include "p-spin.hpp"
#include <fftw3.h>
-inline Real fP(unsigned p, Real q) {
- return 0.5 * pow(q, p);
-}
-
-inline Real dfP(unsigned p, Real q) {
- return 0.5 * p * pow(q, p - 1);
-}
-
-inline Real ddfP(unsigned p, Real q) {
- return 0.5 * p * (p - 1) * pow(q, p - 2);
-}
-
-Real f(Real λ, unsigned p, unsigned s, Real q) {
- return (1 - λ) * fP(p, q) + λ * fP(s, q);
-}
-
-Real df(Real λ, unsigned p, unsigned s, Real q) {
- return (1 - λ) * dfP(p, q) + λ * dfP(s, q);
-}
-
-Real ddf(Real λ, unsigned p, unsigned s, Real q) {
- return (1 - λ) * ddfP(p, q) + λ * ddfP(s, q);
-}
-
FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : n(n), Δω(Δω), Δτ(Δτ) {
a = fftw_alloc_real(2 * n);
â = reinterpret_cast<Complex*>(fftw_alloc_complex(n + 1));
@@ -100,106 +77,6 @@ void FourierTransform::writeToA(unsigned i, Real ai) {
a[i] = ai;
}
-LogarithmicFourierTransform::LogarithmicFourierTransform(unsigned N, Real k, Real Δτ, unsigned pad) : N(N), pad(pad), k(k), Δτ(Δτ) {
- τₛ = -0.5 * N;
- ωₛ = -0.5 * N;
- sₛ = -0.5 * pad * N;
- a = reinterpret_cast<Complex*>(fftw_alloc_complex(pad*N));
- â = reinterpret_cast<Complex*>(fftw_alloc_complex(pad*N));
- fftw_import_wisdom_from_filename("fftw.wisdom");
- a_to_â = fftw_plan_dft_1d(pad*N, reinterpret_cast<fftw_complex*>(a), reinterpret_cast<fftw_complex*>(â), FFTW_BACKWARD, 0);
- â_to_a = fftw_plan_dft_1d(pad*N, reinterpret_cast<fftw_complex*>(â), reinterpret_cast<fftw_complex*>(a), FFTW_BACKWARD, 0);
- fftw_export_wisdom_to_filename("fftw.wisdom");
-}
-
-LogarithmicFourierTransform::~LogarithmicFourierTransform() {
- fftw_destroy_plan(a_to_â);
- fftw_destroy_plan(â_to_a);
- fftw_free(a);
- fftw_free(â);
- fftw_cleanup();
-}
-
-Real LogarithmicFourierTransform::τ(unsigned n) const {
- return Δτ * (n + τₛ);
-}
-
-Real LogarithmicFourierTransform::ω(unsigned n) const {
- return Δτ * (n + ωₛ);
-}
-
-Real LogarithmicFourierTransform::s(unsigned n) const {
- return (n + sₛ) * 2*M_PI / (pad * N * Δτ);
-}
-
-Real LogarithmicFourierTransform::t(unsigned n) const {
- return exp(τ(n));
-}
-
-Real LogarithmicFourierTransform::ν(unsigned n) const {
- return exp(ω(n));
-}
-
-Complex gamma(Complex z) {
- gsl_sf_result logΓ;
- gsl_sf_result argΓ;
-
- gsl_sf_lngamma_complex_e(z.real(), z.imag(), &logΓ, &argΓ);
-
- return exp(logΓ.val + 1i * argΓ.val);
-}
-
-std::vector<Complex> LogarithmicFourierTransform::fourier(const std::vector<Real>& c, bool symmetric) {
- std::vector<Complex> ĉ(N);
- std::vector<Real> σs = {1};
- if (symmetric){
- σs.push_back(-1);
- }
- for (Real σ : σs) {
- for (unsigned n = 0; n < pad*N; n++) {
- if (n < N) {
- a[n] = c[n] * exp((1 - k) * τ(n));
- } else {
- a[n] = 0;
- }
- }
- fftw_execute(a_to_â);
- for (unsigned n = 0; n < pad*N; n++) {
- â[(pad*N / 2 + n) % (pad*N)] *= pow(1i * σ, 1i * s(n) - k) * gamma(k - 1i * s(n));
- }
- fftw_execute(â_to_a);
- for (unsigned n = 0; n < N; n++) {
- ĉ[n] += exp(-k * ω(n)) * a[(pad - 1)*N+n] / (Real)(pad*N);
- }
- }
-
- return ĉ;
-}
-
-std::vector<Real> LogarithmicFourierTransform::inverse(const std::vector<Complex>& ĉ) {
- std::vector<Real> c(N);
- std::vector<Real> σs = {1, -1};
- for (Real σ : σs) {
- for (unsigned n = 0; n < pad * N; n++) {
- if (n < N) {
- a[n] = ĉ[n] * exp((1 - k) * ω(n));
- } else {
- a[n] = 0;
- }
- }
- fftw_execute(a_to_â);
- for (unsigned n = 0; n < pad*N; n++) {
- â[(pad*N / 2 + n) % (pad*N)] *= pow(-1i * σ, 1i * s(n) - k) * gamma(k - 1i * s(n));
- }
- fftw_execute(â_to_a);
- for (unsigned n = 0; n < N; n++) {
- c[n] += exp(-k * τ(n)) * a[(pad - 1)*N+n].real() / (Real)(pad*N) / (2 * M_PI);
- }
- }
-
- return c;
-}
-
std::string fourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real y, unsigned log2n, Real τₘₐₓ) {
return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(y) + "_" + std::to_string(log2n) + "_" + std::to_string(τₘₐₓ) + ".dat";
}