diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-05-08 17:31:48 -0300 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-05-08 17:31:48 -0300 |
commit | 79aa3df97669ddb8836752d55faa16de44d8e3ba (patch) | |
tree | 9b556b18bce7ce148041dbe1393328e475234903 /log-fourier.cpp | |
parent | 77e8c94e5b41287e97e36e34a97478400637d102 (diff) | |
download | code-79aa3df97669ddb8836752d55faa16de44d8e3ba.tar.gz code-79aa3df97669ddb8836752d55faa16de44d8e3ba.tar.bz2 code-79aa3df97669ddb8836752d55faa16de44d8e3ba.zip |
Some insigned gained
Diffstat (limited to 'log-fourier.cpp')
-rw-r--r-- | log-fourier.cpp | 39 |
1 files changed, 18 insertions, 21 deletions
diff --git a/log-fourier.cpp b/log-fourier.cpp index bc2dd87..e15f62a 100644 --- a/log-fourier.cpp +++ b/log-fourier.cpp @@ -7,21 +7,12 @@ LogarithmicFourierTransform::LogarithmicFourierTransform(unsigned N, Real k, Real Δτ, unsigned pad) : N(N), pad(pad), k(k), Δτ(Δτ) { τₛ = -0.5 * N; ωₛ = -0.5 * N; - sₛ = -0.5 * pad * N; - a = reinterpret_cast<Complex*>(FFTW_ALLOC_COMPLEX(pad*N)); - â = reinterpret_cast<Complex*>(FFTW_ALLOC_COMPLEX(pad*N)); - FFTW_IMPORT_WISDOM("fftw.wisdom"); - a_to_â = FFTW_PLAN_DFT_1D(pad*N, reinterpret_cast<FFTW_COMPLEX*>(a), reinterpret_cast<FFTW_COMPLEX*>(â), FFTW_BACKWARD, 0); - â_to_a = FFTW_PLAN_DFT_1D(pad*N, reinterpret_cast<FFTW_COMPLEX*>(â), reinterpret_cast<FFTW_COMPLEX*>(a), FFTW_BACKWARD, 0); - FFTW_EXPORT_WISDOM("fftw.wisdom"); + sₛ = -0.5 * N; + Δs = 0.1; + Δω = Δτ; } LogarithmicFourierTransform::~LogarithmicFourierTransform() { - FFTW_DESTROY_PLAN(a_to_â); - FFTW_DESTROY_PLAN(â_to_a); - FFTW_FREE(a); - FFTW_FREE(â); - FFTW_CLEANUP(); } Real LogarithmicFourierTransform::τ(unsigned n) const { @@ -33,7 +24,7 @@ Real LogarithmicFourierTransform::ω(unsigned n) const { } Real LogarithmicFourierTransform::s(unsigned n) const { - return (n + sₛ) * 2*M_PI / (pad * N * Δτ); + return (n + sₛ) * Δs; } Real LogarithmicFourierTransform::t(unsigned n) const { @@ -84,20 +75,26 @@ std::vector<Complex> LogarithmicFourierTransform::fourier(const std::vector<Real std::vector<Real> LogarithmicFourierTransform::inverse(const std::vector<Complex>& ĉ) { std::vector<Real> c(N); std::vector<Real> σs = {1, -1}; + for (Real σ : σs) { - for (unsigned n = 0; n < N; n++) { - a[n] = (ĉ[n].real() + II * σ * ĉ[n].imag()) * std::exp((1 - k) * ω(n)); - } - FFTW_EXECUTE(a_to_â); - for (unsigned n = 0; n < N; n++) { - â[(N / 2 + n) % N] *= std::pow(-II * σ, II * s(n) - k) * Γ(k - II * s(n)); + std::vector<Complex> F1(N); + for (unsigned l = 0; l < N; l++) { + for (unsigned m = 0; m < N; m++) { + F1[l] += (ĉ[m].real() + II * σ * ĉ[m].imag()) * std::exp((1 - k) * ω(m) + II * ω(m) * s(l)); + } } - FFTW_EXECUTE(â_to_a); for (unsigned n = 0; n < N; n++) { - c[n] += std::exp(-k * τ(n)) * a[n].real() / (2 * M_PI * N); + for (unsigned l = 0; l < N; l++) { + c[n] += (F1[l] * std::exp(II * s(l) * τ(n) + II * σ * (M_PI / 2) * (II * s(l) - k)) * Γ(k - II * s(l))).real(); + } + c[n] *= (Δs / (2 * M_PI)) * (Δω / (2 * M_PI)) * exp(-k * τ(n)); } } + for (unsigned i = 0; i < N; i++) { + c[i] -= c[N-1]; + } + return c; } |