diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-04-20 12:44:38 -0300 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-04-20 12:44:38 -0300 |
commit | 2ede6db86243e59223cd89e6debd7107d02eabd5 (patch) | |
tree | b4371616f8aa124a5f43b6a31e1d199f628fdccf /log-fourier_integrator.cpp | |
parent | 70e78cf066aae300fede3745e9d9ea779a6264cc (diff) | |
download | code-2ede6db86243e59223cd89e6debd7107d02eabd5.tar.gz code-2ede6db86243e59223cd89e6debd7107d02eabd5.tar.bz2 code-2ede6db86243e59223cd89e6debd7107d02eabd5.zip |
Standardized saving and loading of files
Diffstat (limited to 'log-fourier_integrator.cpp')
-rw-r--r-- | log-fourier_integrator.cpp | 61 |
1 files changed, 3 insertions, 58 deletions
diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp index a032401..cf9819a 100644 --- a/log-fourier_integrator.cpp +++ b/log-fourier_integrator.cpp @@ -1,32 +1,6 @@ #include "log-fourier.hpp" -#include "p-spin.hpp" #include <getopt.h> #include <iostream> -#include <fstream> - -std::string logFourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real k) { - return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(β) + "_" + std::to_string(log2n) + "_" + std::to_string(Δτ) + "_" + std::to_string(k) + ".dat"; -} - -std::tuple<std::vector<Complex>, std::vector<Complex>> RddfCtdfCt(LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ) { - std::vector<Real> dfC(C.size()); - std::vector<Real> RddfC(C.size()); - for (unsigned n = 0; n < C.size(); n++) { - RddfC[n] = R[n] * ddf(λ, p, s, C[n]); - dfC[n] = df(λ, p, s, C[n]); - } - std::vector<Complex> RddfCt = fft.fourier(RddfC, false); - std::vector<Complex> dfCt = fft.fourier(dfC, true); - - return {RddfCt, dfCt}; -} - -Real estimateZ(LogarithmicFourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ct, const std::vector<Real>& R, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real β) { - auto [RddfCt, dfCt] = RddfCtdfCt(fft, C, R, p, s, λ); - Real Γ₀ = 1 + τ₀ / 2; - - return ((2 * Γ₀ * std::conj(Rt[0]) + pow(β, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real(); -} int main(int argc, char* argv[]) { /* Model parameters */ @@ -119,16 +93,7 @@ int main(int argc, char* argv[]) { Ȓₜ₋₁[n] = 1.0 / (μₜ₋₁ + 1i * fft.ν(n)); } } else { - std::ifstream cfile(logFourierFile("C", p, s, λ, τ₀, β₀, log2n, Δτ, k), std::ios::binary); - cfile.read((char*)(Cₜ₋₁.data()), N * sizeof(Real)); - cfile.close(); - std::ifstream rfile(logFourierFile("R", p, s, λ, τ₀, β₀, log2n, Δτ, k), std::ios::binary); - rfile.read((char*)(Rₜ₋₁.data()), N * sizeof(Real)); - rfile.close(); - - Ĉₜ₋₁ = fft.fourier(Cₜ₋₁, true); - Ȓₜ₋₁ = fft.fourier(Rₜ₋₁, false); - + logFourierLoad(Cₜ₋₁, Rₜ₋₁, Ĉₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀, log2n, Δτ, k); μₜ₋₁ = estimateZ(fft, Cₜ₋₁, Ĉₜ₋₁, Rₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀); } @@ -181,32 +146,12 @@ int main(int argc, char* argv[]) { μₜ = μₜ₋₁; γ /= 2; } else { - /* Integrate the energy using Simpson's rule */ - Real E = 0; - for (unsigned n = 0; n < N/2-1; n++) { - Real h₂ₙ = fft.t(2*n+1) - fft.t(2*n); - Real h₂ₙ₊₁ = fft.t(2*n+2) - fft.t(2*n+1); - Real f₂ₙ = Rₜ[2*n] * df(λ, p, s, Cₜ[2*n]); - Real f₂ₙ₊₁ = Rₜ[2*n+1] * df(λ, p, s, Cₜ[2*n+1]); - Real f₂ₙ₊₂ = Rₜ[2*n+2] * df(λ, p, s, Cₜ[2*n+2]); - E += (h₂ₙ + h₂ₙ₊₁) / 6 * ( - (2 - h₂ₙ₊₁ / h₂ₙ) * f₂ₙ - + pow(h₂ₙ + h₂ₙ₊₁, 2) / (h₂ₙ * h₂ₙ₊₁) * f₂ₙ₊₁ - + (2 - h₂ₙ / h₂ₙ₊₁) * f₂ₙ₊₂ - ); - } - E *= β; + Real E = energy(fft, Cₜ, Rₜ, p, s, λ, β); std::cerr << "\x1b[2K" << "\r"; std::cerr << β << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl; - std::ofstream outfile(logFourierFile("C", p, s, λ, τ₀, β, log2n, Δτ, k), std::ios::out | std::ios::binary); - outfile.write((const char*)(Cₜ.data()), N * sizeof(Real)); - outfile.close(); - - std::ofstream outfileR(logFourierFile("R", p, s, λ, τ₀, β, log2n, Δτ, k), std::ios::out | std::ios::binary); - outfileR.write((const char*)(Rₜ.data()), N * sizeof(Real)); - outfileR.close(); + logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, k); β += Δβ; Cₜ₋₁ = Cₜ; |