summaryrefslogtreecommitdiff
path: root/log-fourier_integrator.cpp
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2025-04-20 10:47:21 -0300
committerJaron Kent-Dobias <jaron@kent-dobias.com>2025-04-20 10:47:21 -0300
commit7983a06dd3a4bdbfe5df5fc7995d981d12d444a9 (patch)
tree7a2a5bb173395ba066c86a885d64a86ce6bd8b7a /log-fourier_integrator.cpp
parent6a5015076ede303bdcaa63bee493ce9199d1c8f7 (diff)
downloadcode-7983a06dd3a4bdbfe5df5fc7995d981d12d444a9.tar.gz
code-7983a06dd3a4bdbfe5df5fc7995d981d12d444a9.tar.bz2
code-7983a06dd3a4bdbfe5df5fc7995d981d12d444a9.zip
Output full correlation files each step, and decrease γ on failure
Diffstat (limited to 'log-fourier_integrator.cpp')
-rw-r--r--log-fourier_integrator.cpp103
1 files changed, 56 insertions, 47 deletions
diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp
index 0805add..81e7634 100644
--- a/log-fourier_integrator.cpp
+++ b/log-fourier_integrator.cpp
@@ -2,6 +2,11 @@
#include "p-spin.hpp"
#include <getopt.h>
#include <iostream>
+#include <fstream>
+
+std::string logFourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real β, unsigned log2n, Real Δτ, Real k) {
+ return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(β) + "_" + std::to_string(log2n) + "_" + std::to_string(Δτ) + "_" + std::to_string(k) + ".dat";
+}
int main(int argc, char* argv[]) {
/* Model parameters */
@@ -65,7 +70,7 @@ int main(int argc, char* argv[]) {
LogarithmicFourierTransform fft(N, k, Δτ, 4);
Real Γ₀ = 1.0 + τ₀;
- Real μ = 1.0;
+ Real μₜ₋₁ = 1.0;
std::vector<Real> Cₜ₋₁(N);
std::vector<Real> Rₜ₋₁(N);
@@ -75,20 +80,21 @@ int main(int argc, char* argv[]) {
/* Start from the exact solution for β = 0 */
for (unsigned n = 0; n < N; n++) {
if (τ₀ != 1) {
- Cₜ₋₁[n] = Γ₀ * (exp(-μ * fft.t(n)) - μ * τ₀ * exp(-fft.t(n) / τ₀)) / (μ - pow(μ, 3) * pow(τ₀, 2));
+ Cₜ₋₁[n] = Γ₀ * (exp(-μₜ₋₁ * fft.t(n)) - μₜ₋₁ * τ₀ * exp(-fft.t(n) / τ₀)) / (μₜ₋₁ - pow(μₜ₋₁, 3) * pow(τ₀, 2));
} else {
Cₜ₋₁[n] = Γ₀ * exp(-fft.t(n)) * (1 + fft.t(n));
}
- Rₜ₋₁[n] = exp(-μ * fft.t(n));
+ Rₜ₋₁[n] = exp(-μₜ₋₁ * fft.t(n));
- Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μ, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2));
- Ȓₜ₋₁[n] = 1.0 / (μ + 1i * fft.ν(n));
+ Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μₜ₋₁, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2));
+ Ȓₜ₋₁[n] = 1.0 / (μₜ₋₁ + 1i * fft.ν(n));
}
std::vector<Real> Cₜ = Cₜ₋₁;
std::vector<Real> Rₜ = Rₜ₋₁;
std::vector<Complex> Ĉₜ = Ĉₜ₋₁;
std::vector<Complex> Ȓₜ = Ȓₜ₋₁;
+ Real μₜ = μₜ₋₁;
Real β = 0;
while (β < βₘₐₓ) {
@@ -106,25 +112,13 @@ int main(int argc, char* argv[]) {
std::vector<Complex> Ĉₜ₊₁(N);
std::vector<Complex> Ȓₜ₊₁(N);
for (unsigned n = 0; n < N; n++) {
- Ȓₜ₊₁[n] = (1.0 + pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μ + 1i * fft.ν(n));
- Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μ + 1i * fft.ν(n));
+ Ȓₜ₊₁[n] = (1.0 + pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μₜ + 1i * fft.ν(n));
+ Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + 1i * fft.ν(n));
}
-
std::vector<Real> Rₜ₊₁ = fft.inverse(Ȓₜ₊₁);
-
- /*
- for (unsigned n = 0; n < N; n++) {
- RddfC[n] = Rₜ₊₁[n] * ddf(λ, p, s, Cₜ[n]);
- }
- RddfCt = fft.fourier(RddfC, false);
-
- for (unsigned n = 0; n < N; n++) {
- Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ₊₁[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ₊₁[n]))) / (μ + 1i * fft.ν(n));
- }
- */
std::vector<Real> Cₜ₊₁ = fft.inverse(Ĉₜ₊₁);
- μ *= pow(tanh(Cₜ₊₁[0]-1)+1, 0.05);
+ μₜ *= pow(tanh(Cₜ₊₁[0]-1)+1, 0.05);
ΔC = 0;
for (unsigned i = 0; i < N; i++) {
@@ -141,36 +135,51 @@ int main(int argc, char* argv[]) {
}
std::cerr << "\x1b[2K" << "\r";
- std::cerr << β << " " << μ << " " << ΔC << " " << γ << " " << Cₜ[0];
+ std::cerr << β << " " << μₜ << " " << ΔC << " " << γ << " " << Cₜ[0];
}
- /* Integrate the energy using Simpson's rule */
- Real E = 0;
- for (unsigned n = 0; n < N/2-1; n++) {
- Real h₂ₙ = fft.t(2*n+1) - fft.t(2*n);
- Real h₂ₙ₊₁ = fft.t(2*n+2) - fft.t(2*n+1);
- Real f₂ₙ = Rₜ[2*n] * df(λ, p, s, Cₜ[2*n]);
- Real f₂ₙ₊₁ = Rₜ[2*n+1] * df(λ, p, s, Cₜ[2*n+1]);
- Real f₂ₙ₊₂ = Rₜ[2*n+2] * df(λ, p, s, Cₜ[2*n+2]);
- E += (h₂ₙ + h₂ₙ₊₁) / 6 * (
- (2 - h₂ₙ₊₁ / h₂ₙ) * f₂ₙ
- + pow(h₂ₙ + h₂ₙ₊₁, 2) / (h₂ₙ * h₂ₙ₊₁) * f₂ₙ₊₁
- + (2 - h₂ₙ / h₂ₙ₊₁) * f₂ₙ₊₂
- );
- }
- E *= β;
-
- std::cerr << "\x1b[2K" << "\r";
- std::cerr << β << " " << μ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl;
- β += Δβ;
- Cₜ₋₁ = Cₜ;
- Rₜ₋₁ = Rₜ;
- Ĉₜ₋₁ = Ĉₜ;
- Ȓₜ₋₁ = Ȓₜ;
- }
+ if (std::isnan(Cₜ[0])) {
+ Cₜ = Cₜ₋₁;
+ Rₜ = Rₜ₋₁;
+ Ĉₜ = Ĉₜ₋₁;
+ Ȓₜ = Ȓₜ₋₁;
+ μₜ = μₜ₋₁;
+ γ /= 2;
+ } else {
+ /* Integrate the energy using Simpson's rule */
+ Real E = 0;
+ for (unsigned n = 0; n < N/2-1; n++) {
+ Real h₂ₙ = fft.t(2*n+1) - fft.t(2*n);
+ Real h₂ₙ₊₁ = fft.t(2*n+2) - fft.t(2*n+1);
+ Real f₂ₙ = Rₜ[2*n] * df(λ, p, s, Cₜ[2*n]);
+ Real f₂ₙ₊₁ = Rₜ[2*n+1] * df(λ, p, s, Cₜ[2*n+1]);
+ Real f₂ₙ₊₂ = Rₜ[2*n+2] * df(λ, p, s, Cₜ[2*n+2]);
+ E += (h₂ₙ + h₂ₙ₊₁) / 6 * (
+ (2 - h₂ₙ₊₁ / h₂ₙ) * f₂ₙ
+ + pow(h₂ₙ + h₂ₙ₊₁, 2) / (h₂ₙ * h₂ₙ₊₁) * f₂ₙ₊₁
+ + (2 - h₂ₙ / h₂ₙ₊₁) * f₂ₙ₊₂
+ );
+ }
+ E *= β;
- for (unsigned i = 0; i < N; i++) {
- std::cout << fft.t(i) << " " << Cₜ[i] << std::endl;
+ std::cerr << "\x1b[2K" << "\r";
+ std::cerr << β << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl;
+
+ std::ofstream outfile(logFourierFile("C", p, s, λ, τ₀, β, log2n, Δτ, k), std::ios::out | std::ios::binary);
+ outfile.write((const char*)(Cₜ.data()), N * sizeof(Real));
+ outfile.close();
+
+ std::ofstream outfileR(logFourierFile("R", p, s, λ, τ₀, β, log2n, Δτ, k), std::ios::out | std::ios::binary);
+ outfileR.write((const char*)(Rₜ.data()), N * sizeof(Real));
+ outfileR.close();
+
+ β += Δβ;
+ Cₜ₋₁ = Cₜ;
+ Rₜ₋₁ = Rₜ;
+ Ĉₜ₋₁ = Ĉₜ;
+ Ȓₜ₋₁ = Ȓₜ;
+ μₜ₋₁ = μₜ;
+ }
}
return 0;