summaryrefslogtreecommitdiff
path: root/log_integrator.cpp
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2025-05-08 17:32:18 -0300
committerJaron Kent-Dobias <jaron@kent-dobias.com>2025-05-08 17:32:18 -0300
commite151b804071d69a41beef04a73c12c42b12bd775 (patch)
tree01d989abdc354ab28e9a4a551052039972d2cc42 /log_integrator.cpp
parent18c33edc2fdf6abc9f8f36ea67b256d4a885493a (diff)
downloadcode-e151b804071d69a41beef04a73c12c42b12bd775.tar.gz
code-e151b804071d69a41beef04a73c12c42b12bd775.tar.bz2
code-e151b804071d69a41beef04a73c12c42b12bd775.zip
Revert "Made log-Fourier padding symmetric, and began writing regular integrator"
This reverts commit 5fd9866479ec50051d2c9eeb4e217e9376e6f9b4.
Diffstat (limited to 'log_integrator.cpp')
-rw-r--r--log_integrator.cpp219
1 files changed, 0 insertions, 219 deletions
diff --git a/log_integrator.cpp b/log_integrator.cpp
deleted file mode 100644
index a8d9778..0000000
--- a/log_integrator.cpp
+++ /dev/null
@@ -1,219 +0,0 @@
-#include "log-fourier.hpp"
-#include "p-spin.hpp"
-#include <getopt.h>
-#include <iostream>
-
-int main(int argc, char* argv[]) {
- /* Model parameters */
- unsigned p = 2;
- unsigned s = 2;
- Real λ = 0.5;
- Real τ₀ = 0;
-
- /* Log-Fourier parameters */
- unsigned log2n = 8;
- Real Δτ = 0.1;
- Real k = 0.1;
-
- /* Iteration parameters */
- Real ε = 1e-14;
- Real γ₀ = 1;
- Real x = 0.5;
- Real β₀ = 0;
- Real βₘₐₓ = 0.7;
- Real Δβ = 0.01;
- bool loadData = false;
- unsigned stepsToRespond = 1000;
- unsigned pad = 4;
-
- int opt;
-
- while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:e:0:lS:x:P:")) != -1) {
- switch (opt) {
- case 'p':
- p = atoi(optarg);
- break;
- case 's':
- s = atoi(optarg);
- break;
- case '2':
- log2n = atoi(optarg);
- break;
- case 't':
- τ₀ = atof(optarg);
- break;
- case 'b':
- βₘₐₓ = atof(optarg);
- break;
- case 'd':
- Δβ = atof(optarg);
- break;
- case 'g':
- γ₀ = atof(optarg);
- break;
- case 'k':
- k = atof(optarg);
- break;
- case 'D':
- Δτ = atof(optarg);
- break;
- case 'e':
- ε = atof(optarg);
- break;
- case '0':
- β₀ = atof(optarg);
- break;
- case 'x':
- x = atof(optarg);
- break;
- case 'P':
- pad = atoi(optarg);
- break;
- case 'l':
- loadData = true;
- break;
- case 'S':
- stepsToRespond = atoi(optarg);
- break;
- default:
- exit(1);
- }
- }
-
- unsigned N = pow(2, log2n);
-
- LogarithmicFourierTransform fft(N, k, Δτ, pad);
-
- Real Γ₀ = 1;
- Real μₜ₋₁ = Γ₀;
- if (τ₀ > 0) {
- μₜ₋₁ = (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀);
- }
-
- std::vector<Real> Cₜ₋₁(N);
- std::vector<Real> Rₜ₋₁(N);
- std::vector<Complex> Ĉₜ₋₁(N);
- std::vector<Complex> Ȓₜ₋₁(N);
-
- if (!loadData) {
- /* Start from the exact solution for β = 0 */
- for (unsigned n = 0; n < N; n++) {
- if (τ₀ > 0) {
- if (τ₀ == 2) {
- Cₜ₋₁[n] = Γ₀ * exp(-fft.t(n) / 2) * (1 + fft.t(n) / 2);
- } else {
- Cₜ₋₁[n] = Γ₀ * (exp(-μₜ₋₁ * fft.t(n)) - μₜ₋₁ * τ₀ * exp(-fft.t(n) / τ₀)) / (μₜ₋₁ - pow(μₜ₋₁, 3) * pow(τ₀, 2));
- }
- } else {
- Cₜ₋₁[n] = Γ₀ * exp(-μₜ₋₁ * fft.t(n)) / μₜ₋₁;
- }
- Rₜ₋₁[n] = exp(-μₜ₋₁ * fft.t(n));
-
- Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μₜ₋₁, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2));
- Ȓₜ₋₁[n] = (Real)1.0 / (μₜ₋₁ + II * fft.ν(n));
- }
- } else {
- logFourierLoad(Cₜ₋₁, Rₜ₋₁, Ĉₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀, log2n, Δτ, k);
- μₜ₋₁ = estimateZ(fft, Cₜ₋₁, Ĉₜ₋₁, Rₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀);
- }
-
- std::vector<Real> Cₜ = Cₜ₋₁;
- std::vector<Real> Rₜ = Rₜ₋₁;
- std::vector<Complex> Ĉₜ = Ĉₜ₋₁;
- std::vector<Complex> Ȓₜ = Ȓₜ₋₁;
- Real μₜ = μₜ₋₁;
-
- Real β = β₀ + Δβ;
- while (β < βₘₐₓ) {
- Real γ = γ₀;
- Real ΔCmin = 1000;
- Real ΔCₜ = 100;
- unsigned stepsUp = 0;
- while (ΔCₜ > ε) {
- std::vector<Real> RddfC(N);
- std::vector<Real> dfC(N);
- for (unsigned i = 0; i < N; i++) {
- RddfC[i] = Rₜ[i] * ddf(λ, p, s, Cₜ[i]);
- dfC[i] = df(λ, p, s, Cₜ[i]);
- }
-
- std::vector<Real> dC(N);
- std::vector<Real> dR(N);
-
- for (unsigned i = 0; i < N; i++) {
- dC[i] += -μₜ * Cₜ[i];
- Real ΓR;
- for (unsigned j = 0; j < N; j++) {
-
- }
- }
-
-
- std::vector<Complex> Ĉₜ₊₁(N);
- std::vector<Complex> Ȓₜ₊₁(N);
- for (unsigned n = 0; n < N; n++) {
- Ȓₜ₊₁[n] = ((Real)1.0 + std::pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μₜ + II * fft.ν(n));
- Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + std::pow(τ₀ * fft.ν(n), 2)) + std::pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + II * fft.ν(n));
- }
- std::vector<Real> Rₜ₊₁ = fft.inverse(Ȓₜ₊₁);
- std::vector<Real> Cₜ₊₁ = fft.inverse(Ĉₜ₊₁);
-
- μₜ *= pow(tanh(Cₜ₊₁[0]-1)+1, x);
-
- ΔCₜ = 0;
- for (unsigned i = 0; i < N; i++) {
- ΔCₜ += std::norm(Cₜ[i] - Cₜ₊₁[i]);
- ΔCₜ += std::norm(Rₜ[i] - Rₜ₊₁[i]);
- }
- ΔCₜ = sqrt(ΔCₜ) / (2*N);
-
- if (ΔCₜ < 0.9 * ΔCmin) {
- ΔCmin = ΔCₜ;
- stepsUp = 0;
- } else {
- stepsUp++;
- }
-
- if (stepsUp > stepsToRespond) {
- γ = std::max(γ/2, (Real)1e-4);
- stepsUp = 0;
- ΔCmin = ΔCₜ;
- }
-
- for (unsigned i = 0; i < N; i++) {
- Cₜ[i] += γ * (Cₜ₊₁[i] - Cₜ[i]);
- Rₜ[i] += γ * (Rₜ₊₁[i] - Rₜ[i]);
- Ĉₜ[i] += γ * (Ĉₜ₊₁[i] - Ĉₜ[i]);
- Ȓₜ[i] += γ * (Ȓₜ₊₁[i] - Ȓₜ[i]);
- }
-
- std::cerr << "\x1b[2K" << "\r";
- std::cerr << β << " " << μₜ << " " << ΔCₜ << " " << γ << " " << Cₜ[0];
- }
-
- if (std::isnan(Cₜ[0])) {
- γ₀ /= 2;
- Cₜ = Cₜ₋₁;
- Rₜ = Rₜ₋₁;
- Ĉₜ = Ĉₜ₋₁;
- Ȓₜ = Ȓₜ₋₁;
- μₜ = μₜ₋₁;
- } else {
- Real E = energy(fft, Cₜ, Rₜ, p, s, λ, β);
-
- std::cerr << "\x1b[2K" << "\r";
- std::cerr << β << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl;
-
- logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, k);
-
- β += Δβ;
- Cₜ₋₁ = Cₜ;
- Rₜ₋₁ = Rₜ;
- Ĉₜ₋₁ = Ĉₜ;
- Ȓₜ₋₁ = Ȓₜ;
- μₜ₋₁ = μₜ;
- }
- }
-
- return 0;
-}