diff options
-rw-r--r-- | Makefile | 7 | ||||
-rw-r--r-- | fourier_integrator.cpp | 204 | ||||
-rw-r--r-- | integrator.cpp | 2 |
3 files changed, 210 insertions, 3 deletions
@@ -1,6 +1,6 @@ -all: walk correlations integrator +all: walk correlations integrator fourier_integrator -CC := clang++ -std=c++17 -Wno-mathematical-notation-identifier-extension -O3 -march=native -mtune=native -fopenmp -g +CC := clang++ -std=c++17 -Wno-mathematical-notation-identifier-extension -O3 -march=native -mtune=native -fopenmp -lfftw3 -g walk: walk.cpp $(CC) walk.cpp -o walk @@ -10,3 +10,6 @@ correlations: correlations.cpp integrator: integrator.cpp $(CC) integrator.cpp -o integrator + +fourier_integrator: fourier_integrator.cpp + $(CC) fourier_integrator.cpp -o fourier_integrator diff --git a/fourier_integrator.cpp b/fourier_integrator.cpp new file mode 100644 index 0000000..829a074 --- /dev/null +++ b/fourier_integrator.cpp @@ -0,0 +1,204 @@ +#include <getopt.h> +#include <vector> +#include <cmath> +#include <iostream> +#include <fftw3.h> +#include <complex> + +using Real = double; +using Complex = std::complex<Real>; +using namespace std::complex_literals; + +inline Real f(unsigned p, Real q) { + return 0.5 * pow(q, p); +} + +inline Real df(unsigned p, Real q) { + return 0.5 * p * pow(q, p - 1); +} + +inline Real ddf(unsigned p, Real q) { + return 0.5 * p * (p - 1) * pow(q, p - 2); +} + +class FourierTransform { +private: + std::vector<Real> a; + std::vector<Complex> â; + fftw_plan plan_r2c; + fftw_plan plan_c2r; + Real Δω; + Real Δτ; +public: + FourierTransform(unsigned n, Real Δω, Real Δτ) : a(2 * n), â(n + 1), Δω(Δω), Δτ(Δτ) { + plan_r2c = fftw_plan_dft_r2c_1d(2 * n, a.data(), reinterpret_cast<fftw_complex*>(â.data()), 0); + plan_c2r = fftw_plan_dft_c2r_1d(2 * n, reinterpret_cast<fftw_complex*>(â.data()), a.data(), 0); + } + + ~FourierTransform() { + fftw_destroy_plan(plan_r2c); + fftw_destroy_plan(plan_c2r); + fftw_cleanup(); + } + + std::vector<Complex> fourier(const std::vector<Real>& c) { + a = c; + fftw_execute(plan_r2c); + std::vector<Complex> ĉ(â.size()); + for (unsigned i = 0; i < â.size(); i++) { + ĉ[i] = â[i] * (Δτ * M_PI); + } + return ĉ; + } + + std::vector<Real> inverse(const std::vector<Complex>& ĉ) { + â = ĉ; + fftw_execute(plan_c2r); + std::vector<Real> c(a.size()); + for (unsigned i = 0; i < a.size(); i++) { + c[i] = a[i] * (Δω / (2 * M_PI)); + } + return c; + } +}; + +int main(int argc, char* argv[]) { + unsigned p = 2; + Real τ₀ = 0; + Real yₘₐₓ = 0.5; + Real Δy = 0.05; + + unsigned log2n = 8; + Real τₘₐₓ = 20 / M_PI; + + unsigned maxIterations = 1000; + Real ε = 1e-14; + Real γ = 0; + + int opt; + + while ((opt = getopt(argc, argv, "p:2:T:t:y:d:I:g:")) != -1) { + switch (opt) { + case 'p': + p = atoi(optarg); + break; + case '2': + log2n = atoi(optarg); + break; + case 'T': + τₘₐₓ = atof(optarg) / M_PI; + break; + case 't': + τ₀ = atof(optarg); + break; + case 'y': + yₘₐₓ = atof(optarg); + break; + case 'd': + Δy = atof(optarg); + break; + case 'I': + maxIterations = (unsigned)atof(optarg); + break; + case 'g': + γ = atof(optarg); + break; + default: + exit(1); + } + } + + unsigned n = pow(2, log2n); + + Real Δτ = τₘₐₓ / n; + Real Δω = 1 / τₘₐₓ; + + Real z = (-1+sqrt(1+2*τ₀)) / (2 * τ₀); + Real Γ₀ = 1; + + std::vector<Real> C(2 * n); + std::vector<Real> R(2 * n); + + FourierTransform fft(n, Δω, Δτ); + + for (unsigned i = 0; i < n; i++) { + Real τ = i * Δτ * M_PI; + C[i] = Γ₀ / 2 * (exp(-z * τ) - z * τ₀ * exp(-τ / τ₀)) / (z - pow(z, 3) * pow(τ₀, 2)); + if (i > 0) { + C[2 * n - i] = C[i]; + } + R[i] = exp(-z * τ); + } + + std::vector<Complex> Ct = fft.fourier(C); + std::vector<Complex> Rt = fft.fourier(R); + + Real y = 0; + + while (y += Δy, y <= yₘₐₓ) { + Real ΔC = 1;; + unsigned it = 0; + while (sqrt(ΔC / C.size()) > ε) { + it++; + std::vector<Real> RddfC(C.size()); + for (unsigned i = 0; i < C.size(); i++) { + RddfC[i] = R[i] * ddf(p, C[i]); + } + std::vector<Complex> RddfCt = fft.fourier(RddfC); + + std::vector<Real> dfC(C.size()); + for (unsigned i = 0; i < C.size(); i++) { + dfC[i] = df(p, C[i]); + } + std::vector<Complex> dfCt = fft.fourier(dfC); + + for (unsigned i = 0; i < Rt.size(); i++) { + Real ω = i * Δω; + Rt[i] = (1.0 + pow(y, 2) * RddfCt[i] * Rt[i]) / (z + 1i * ω); + } + + for (unsigned i = 0; i < Ct.size(); i++) { + Real ω = i * Δω; + Ct[i] = (Γ₀ * std::conj(Rt[i]) / (1 + pow(τ₀ * ω, 2)) + pow(y, 2) * (RddfCt[i] * Ct[i] + dfCt[i] * std::conj(Rt[i]))) / (z + 1i * ω); + } + + std::vector<Real> Cnew = fft.inverse(Ct); + std::vector<Real> Rnew = fft.inverse(Rt); + + ΔC = 0; + for (unsigned i = 0; i < Cnew.size(); i++) { + ΔC += pow(Cnew[i] - C[i], 2); + ΔC += pow(Rnew[i] - R[i], 2); + } + + for (unsigned i = 0; i < Cnew.size(); i++) { + C[i] += γ * (Cnew[i] - C[i]); + } + + for (unsigned i = 0; i < Rnew.size(); i++) { + R[i] += γ * (Rnew[i] - R[i]); + } + + z *= Cnew[0]; + + Real energy = 0; + + for (unsigned i = 0; i < n; i++) { + energy += y * R[i] * df(p, C[i]) * M_PI * Δτ; + } + + std::cerr << "y " << y << " iteration " << it << ": " << sqrt(ΔC / C.size()) << " " << pow(y, 2) / z << " " << energy << std::endl; + + if (it > maxIterations) { + it = 0; + γ /= 2; + } + } + } + + for (unsigned i = 0; i < C.size(); i++) { + std::cout << i * Δτ * M_PI << " " << C[i] << std::endl; + } + + return 0; +} diff --git a/integrator.cpp b/integrator.cpp index a94f37e..8b13a9b 100644 --- a/integrator.cpp +++ b/integrator.cpp @@ -128,7 +128,7 @@ int main(int argc, char* argv[]) { } } - Real z = 0.5; + Real z = 0.4794707565634420155347; Real Γ₀ = 1; Real τ = 0; |