summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--compile_flags.txt3
-rw-r--r--walk.cpp128
2 files changed, 131 insertions, 0 deletions
diff --git a/compile_flags.txt b/compile_flags.txt
new file mode 100644
index 0000000..4cb2489
--- /dev/null
+++ b/compile_flags.txt
@@ -0,0 +1,3 @@
+-std=c++17
+-Wno-mathematical-notation-identifier-extension
+-Wall
diff --git a/walk.cpp b/walk.cpp
new file mode 100644
index 0000000..3d7020d
--- /dev/null
+++ b/walk.cpp
@@ -0,0 +1,128 @@
+#include <getopt.h>
+#include <iomanip>
+
+#include "pcg-cpp/include/pcg_random.hpp"
+#include "randutils/randutils.hpp"
+
+#include "eigen/Eigen/Dense"
+
+using Rng = randutils::random_generator<pcg32>;
+
+using Real = double;
+using Vector = Eigen::Matrix<Real, Eigen::Dynamic, 1>;
+using Matrix = Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic>;
+
+Vector normalize(const Vector& x) {
+ return x * sqrt(x.size() / x.squaredNorm());
+}
+
+class QuadraticModel {
+private:
+ Matrix J;
+
+public:
+ unsigned N;
+
+ QuadraticModel(unsigned N, Rng& r) : J(N, N), N(N) {
+
+ for (unsigned i = 0; i < N; i++) {
+ for (unsigned j = i; j < N; j++) {
+ J(i, j) = r.variate<Real, std::normal_distribution>(0, 1 / sqrt(N));
+ if (i != j) {
+ J(j, i) = J(i, j);
+ }
+ }
+ }
+ }
+
+ Real H(const Vector& x) const {
+ return 0.5 * (J * x).dot(x);
+ }
+
+ Vector ∇H(const Vector& x) const {
+ Vector ∂H = J * x;
+ return ∂H - (∂H.dot(x) / x.squaredNorm()) * x;
+ }
+};
+
+Vector gradientDescent(const QuadraticModel& M, const Vector& x₀, Real E, Real ε = 1e-14) {
+ Vector xₜ = x₀;
+ Real Hₜ = M.H(x₀);
+ Real α = 1;
+ Real m;
+ Vector ∇H;
+
+ while (
+ ∇H = (Hₜ / M.N - E) * M.∇H(xₜ) / M.N, m = ∇H.squaredNorm(),
+ m > ε
+ ) {
+ Vector xₜ₊₁;
+ Real Hₜ₊₁;
+
+ while (
+ xₜ₊₁ = normalize(xₜ - α * ∇H), Hₜ₊₁ = M.H(xₜ₊₁),
+ pow(Hₜ₊₁ / M.N - E, 2) > pow(Hₜ / M.N - E, 2) - α * m
+ ) {
+ α /= 2;
+ }
+
+ xₜ = xₜ₊₁;
+ Hₜ = Hₜ₊₁;
+ α *= 1.25;
+ }
+
+ return xₜ;
+}
+
+Vector randomStep(const QuadraticModel& M, const Vector& x₀, Real E, Rng& r, Real Δt = 1e-4) {
+ Vector η(M.N);
+ for (Real& ηᵢ : η) {
+ ηᵢ = r.variate<Real, std::normal_distribution>(0, sqrt(2 * Δt));
+ }
+ η -= η.dot(x₀) * x₀ / x₀.squaredNorm();
+ Vector ∇H₀ = M.∇H(x₀);
+ η -= η.dot(∇H₀) * ∇H₀ / ∇H₀.squaredNorm();
+ return gradientDescent(M, normalize(x₀ + η), E);
+}
+
+int main(int argc, char* argv[]) {
+ unsigned N = 10;
+ unsigned steps = 10;
+ Real E = 0;
+
+ int opt;
+
+ while ((opt = getopt(argc, argv, "N:E:n:")) != -1) {
+ switch (opt) {
+ case 'N':
+ N = (unsigned)atof(optarg);
+ break;
+ case 'E':
+ E = atof(optarg);
+ break;
+ case 'n':
+ steps = (unsigned)atof(optarg);
+ break;
+ default:
+ exit(1);
+ }
+ }
+
+ Rng r;
+ QuadraticModel ls(N, r);
+
+ Vector x₀ = Vector::Zero(N);
+ x₀(0) = sqrt(N);
+ x₀ = gradientDescent(ls, x₀, E);
+
+ std::cout << std::setprecision(15);
+
+ Vector x = x₀;
+
+ for (unsigned step = 0; step < steps; step++) {
+ x = randomStep(ls, x, E, r);
+ std::cout << ls.H(x) / N << " " << x.dot(x₀) / N << std::endl;
+ }
+
+ return 0;
+}