summaryrefslogtreecommitdiff
path: root/walk.cpp
blob: 3d7020d175fa3f340e4a7c3bf2f929543f748bf0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#include <getopt.h>
#include <iomanip>

#include "pcg-cpp/include/pcg_random.hpp"
#include "randutils/randutils.hpp"

#include "eigen/Eigen/Dense"

using Rng = randutils::random_generator<pcg32>;

using Real = double;
using Vector = Eigen::Matrix<Real, Eigen::Dynamic, 1>;
using Matrix = Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic>;

Vector normalize(const Vector& x) {
  return x * sqrt(x.size() / x.squaredNorm());
}

class QuadraticModel {
private:
  Matrix J;

public:
  unsigned N;

  QuadraticModel(unsigned N, Rng& r) : J(N, N), N(N) {

    for (unsigned i = 0; i < N; i++) {
      for (unsigned j = i; j < N; j++) {
        J(i, j) = r.variate<Real, std::normal_distribution>(0, 1 / sqrt(N));
        if (i != j) {
          J(j, i) = J(i, j);
        }
      }
    }
  }

  Real H(const Vector& x) const {
    return 0.5 * (J * x).dot(x);
  }

  Vector ∇H(const Vector& x) const {
    Vector ∂H = J * x;
    return ∂H - (∂H.dot(x) / x.squaredNorm()) * x;
  }
};

Vector gradientDescent(const QuadraticModel& M, const Vector& x₀, Real E, Real ε = 1e-14) {
  Vector xₜ = x₀;
  Real Hₜ = M.H(x₀);
  Real α = 1;
  Real m;
  Vector ∇H;

  while (
    ∇H = (Hₜ / M.N - E) * M.H(xₜ) / M.N, m = ∇H.squaredNorm(),
    m > ε
  ) {
    Vector xₜ₊₁;
    Real Hₜ₊₁;

    while (
      xₜ₊₁ = normalize(xₜ - α * ∇H), Hₜ₊₁ = M.H(xₜ₊₁),
      pow(Hₜ₊₁ / M.N - E, 2) > pow(Hₜ / M.N - E, 2) - α * m
    ) {
      α /= 2;
    }

    xₜ = xₜ₊₁;
    Hₜ = Hₜ₊₁;
    α *= 1.25;
  }

  return xₜ;
}

Vector randomStep(const QuadraticModel& M, const Vector& x₀, Real E, Rng& r, Real Δt = 1e-4) {
  Vector η(M.N);
  for (Real& ηᵢ : η) {
    ηᵢ = r.variate<Real, std::normal_distribution>(0, sqrt(2 * Δt));
  }
  η -= η.dot(x₀) * x₀ / x₀.squaredNorm();
  Vector ∇H₀ = M.H(x₀);
  η -= η.dot(∇H₀) * ∇H₀ / ∇H₀.squaredNorm();
  return gradientDescent(M, normalize(x₀ + η), E);
}

int main(int argc, char* argv[]) {
  unsigned N = 10;
  unsigned steps = 10;
  Real E = 0;

  int opt;

  while ((opt = getopt(argc, argv, "N:E:n:")) != -1) {
    switch (opt) {
    case 'N':
      N = (unsigned)atof(optarg);
      break;
    case 'E':
      E = atof(optarg);
      break;
    case 'n':
      steps = (unsigned)atof(optarg);
      break;
    default:
      exit(1);
    }
  }

  Rng r;
  QuadraticModel ls(N, r);

  Vector x₀ = Vector::Zero(N);
  x₀(0) = sqrt(N);
  x₀ = gradientDescent(ls, x₀, E);

  std::cout << std::setprecision(15);

  Vector x = x₀;

  for (unsigned step = 0; step < steps; step++) {
    x = randomStep(ls, x, E, r);
    std::cout << ls.H(x) / N << " " << x.dot(x₀) / N << std::endl;
  }

  return 0;
}