summaryrefslogtreecommitdiff
path: root/fourier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'fourier.cpp')
-rw-r--r--fourier.cpp108
1 files changed, 66 insertions, 42 deletions
diff --git a/fourier.cpp b/fourier.cpp
index 8943521..95d0025 100644
--- a/fourier.cpp
+++ b/fourier.cpp
@@ -1,60 +1,82 @@
#include "fourier.hpp"
-
-inline Real fP(unsigned p, Real q) {
- return 0.5 * pow(q, p);
-}
-
-inline Real dfP(unsigned p, Real q) {
- return 0.5 * p * pow(q, p - 1);
-}
-
-inline Real ddfP(unsigned p, Real q) {
- return 0.5 * p * (p - 1) * pow(q, p - 2);
-}
-
-Real f(Real λ, unsigned p, unsigned s, Real q) {
- return (1 - λ) * fP(p, q) + λ * fP(s, q);
-}
-
-Real df(Real λ, unsigned p, unsigned s, Real q) {
- return (1 - λ) * dfP(p, q) + λ * dfP(s, q);
-}
-
-Real ddf(Real λ, unsigned p, unsigned s, Real q) {
- return (1 - λ) * ddfP(p, q) + λ * ddfP(s, q);
-}
-
-FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : a(2 * n), â(n + 1), Δω(Δω), Δτ(Δτ) {
- plan_r2c = fftw_plan_dft_r2c_1d(2 * n, a.data(), reinterpret_cast<fftw_complex*>(â.data()), flags);
- plan_c2r = fftw_plan_dft_c2r_1d(2 * n, reinterpret_cast<fftw_complex*>(â.data()), a.data(), flags);
+#include "p-spin.hpp"
+#include <fftw3.h>
+
+FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : n(n), Δω(Δω), Δτ(Δτ) {
+ a = fftw_alloc_real(2 * n);
+ â = reinterpret_cast<Complex*>(fftw_alloc_complex(n + 1));
+// fftw_init_threads();
+// fftw_plan_with_nthreads(FFTW_THREADS);
+ fftw_import_wisdom_from_filename("fftw.wisdom");
+ plan_r2c = fftw_plan_dft_r2c_1d(2 * n, a, reinterpret_cast<fftw_complex*>(â), flags);
+ plan_c2r = fftw_plan_dft_c2r_1d(2 * n, reinterpret_cast<fftw_complex*>(â), a, flags);
+ fftw_export_wisdom_to_filename("fftw.wisdom");
}
FourierTransform::~FourierTransform() {
fftw_destroy_plan(plan_r2c);
fftw_destroy_plan(plan_c2r);
+ fftw_free(a);
+ fftw_free(â);
fftw_cleanup();
}
std::vector<Complex> FourierTransform::fourier(const std::vector<Real>& c) {
- a = c;
+ for (unsigned i = 0; i < 2 * n; i++) {
+ a[i] = c[i];
+ }
+ fftw_execute(plan_r2c);
+ std::vector<Complex> ĉ(n + 1);
+ for (unsigned i = 0; i < n + 1; i++) {
+ ĉ[i] = â[i] * (Δτ * M_PI);
+ }
+ return ĉ;
+}
+
+std::vector<Complex> FourierTransform::fourier() {
fftw_execute(plan_r2c);
- std::vector<Complex> ĉ(â.size());
- for (unsigned i = 0; i < â.size(); i++) {
+ std::vector<Complex> ĉ(n+1);
+ for (unsigned i = 0; i < n+1; i++) {
ĉ[i] = â[i] * (Δτ * M_PI);
}
return ĉ;
}
+std::vector<Real> FourierTransform::convolve(const std::vector<Real>& Γh, const std::vector<Real>& R) {
+ a[0] = 0;
+ for (unsigned i = 1; i < n; i++) {
+ a[i] = R[i];
+ a[2 * n - i] = -R[i];
+ }
+ fftw_execute(plan_r2c);
+ for (unsigned i = 1; i < n + 1; i++) {
+ â[i] *= Γh[i] * (Δτ * M_PI);
+ }
+ fftw_execute(plan_c2r);
+ std::vector<Real> dC(n);
+ for (unsigned i = 0; i < n; i++) {
+ dC[i] = a[i] * (Δω / (2 * M_PI));
+ }
+
+ return dC;
+}
+
std::vector<Real> FourierTransform::inverse(const std::vector<Complex>& ĉ) {
- â = ĉ;
+ for (unsigned i = 0; i < n + 1; i++) {
+ â[i] = ĉ[i];
+ }
fftw_execute(plan_c2r);
- std::vector<Real> c(a.size());
- for (unsigned i = 0; i < a.size(); i++) {
+ std::vector<Real> c(2*n);
+ for (unsigned i = 0; i < 2*n; i++) {
c[i] = a[i] * (Δω / (2 * M_PI));
}
return c;
}
+void FourierTransform::writeToA(unsigned i, Real ai) {
+ a[i] = ai;
+}
+
std::string fourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real y, unsigned log2n, Real τₘₐₓ) {
return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(y) + "_" + std::to_string(log2n) + "_" + std::to_string(τₘₐₓ) + ".dat";
}
@@ -70,23 +92,25 @@ Real energy(const std::vector<Real>& C, const std::vector<Real>& R, unsigned p,
}
std::tuple<std::vector<Complex>, std::vector<Complex>> RddfCtdfCt(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ) {
- std::vector<Real> RddfC(C.size());
for (unsigned i = 0; i < C.size() / 2; i++) {
- RddfC[i] = R[i] * ddf(λ, p, s, C[i]);
+ fft.writeToA(i, R[i] * ddf(λ, p, s, C[i]));
+ }
+ for (unsigned i = C.size() / 2; i < C.size(); i++) {
+ fft.writeToA(i, 0);
}
- std::vector<Complex> RddfCt = fft.fourier(RddfC);
+ std::vector<Complex> RddfCt = fft.fourier();
- std::vector<Real> dfC(C.size());
for (unsigned i = 0; i < C.size(); i++) {
- dfC[i] = df(λ, p, s, C[i]);
+ fft.writeToA(i, df(λ, p, s, C[i]));
}
- std::vector<Complex> dfCt = fft.fourier(dfC);
+ std::vector<Complex> dfCt = fft.fourier();
return {RddfCt, dfCt};
}
-Real estimateZ(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ct, const std::vector<Real>& R, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real y) {
+Real estimateZ(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ct, const std::vector<Real>& R, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real y) {
auto [RddfCt, dfCt] = RddfCtdfCt(fft, C, R, p, s, λ);
+ Real Γ₀ = 1 + τ₀ / 2;
- return ((std::conj(Rt[0]) + pow(y, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real();
+ return ((Γ₀ * std::conj(Rt[0]) + pow(y, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real();
}