diff options
Diffstat (limited to 'fourier.cpp')
-rw-r--r-- | fourier.cpp | 108 |
1 files changed, 66 insertions, 42 deletions
diff --git a/fourier.cpp b/fourier.cpp index 8943521..95d0025 100644 --- a/fourier.cpp +++ b/fourier.cpp @@ -1,60 +1,82 @@ #include "fourier.hpp" - -inline Real fP(unsigned p, Real q) { - return 0.5 * pow(q, p); -} - -inline Real dfP(unsigned p, Real q) { - return 0.5 * p * pow(q, p - 1); -} - -inline Real ddfP(unsigned p, Real q) { - return 0.5 * p * (p - 1) * pow(q, p - 2); -} - -Real f(Real λ, unsigned p, unsigned s, Real q) { - return (1 - λ) * fP(p, q) + λ * fP(s, q); -} - -Real df(Real λ, unsigned p, unsigned s, Real q) { - return (1 - λ) * dfP(p, q) + λ * dfP(s, q); -} - -Real ddf(Real λ, unsigned p, unsigned s, Real q) { - return (1 - λ) * ddfP(p, q) + λ * ddfP(s, q); -} - -FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : a(2 * n), â(n + 1), Δω(Δω), Δτ(Δτ) { - plan_r2c = fftw_plan_dft_r2c_1d(2 * n, a.data(), reinterpret_cast<fftw_complex*>(â.data()), flags); - plan_c2r = fftw_plan_dft_c2r_1d(2 * n, reinterpret_cast<fftw_complex*>(â.data()), a.data(), flags); +#include "p-spin.hpp" +#include <fftw3.h> + +FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : n(n), Δω(Δω), Δτ(Δτ) { + a = fftw_alloc_real(2 * n); + â = reinterpret_cast<Complex*>(fftw_alloc_complex(n + 1)); +// fftw_init_threads(); +// fftw_plan_with_nthreads(FFTW_THREADS); + fftw_import_wisdom_from_filename("fftw.wisdom"); + plan_r2c = fftw_plan_dft_r2c_1d(2 * n, a, reinterpret_cast<fftw_complex*>(â), flags); + plan_c2r = fftw_plan_dft_c2r_1d(2 * n, reinterpret_cast<fftw_complex*>(â), a, flags); + fftw_export_wisdom_to_filename("fftw.wisdom"); } FourierTransform::~FourierTransform() { fftw_destroy_plan(plan_r2c); fftw_destroy_plan(plan_c2r); + fftw_free(a); + fftw_free(â); fftw_cleanup(); } std::vector<Complex> FourierTransform::fourier(const std::vector<Real>& c) { - a = c; + for (unsigned i = 0; i < 2 * n; i++) { + a[i] = c[i]; + } + fftw_execute(plan_r2c); + std::vector<Complex> ĉ(n + 1); + for (unsigned i = 0; i < n + 1; i++) { + ĉ[i] = â[i] * (Δτ * M_PI); + } + return ĉ; +} + +std::vector<Complex> FourierTransform::fourier() { fftw_execute(plan_r2c); - std::vector<Complex> ĉ(â.size()); - for (unsigned i = 0; i < â.size(); i++) { + std::vector<Complex> ĉ(n+1); + for (unsigned i = 0; i < n+1; i++) { ĉ[i] = â[i] * (Δτ * M_PI); } return ĉ; } +std::vector<Real> FourierTransform::convolve(const std::vector<Real>& Γh, const std::vector<Real>& R) { + a[0] = 0; + for (unsigned i = 1; i < n; i++) { + a[i] = R[i]; + a[2 * n - i] = -R[i]; + } + fftw_execute(plan_r2c); + for (unsigned i = 1; i < n + 1; i++) { + â[i] *= Γh[i] * (Δτ * M_PI); + } + fftw_execute(plan_c2r); + std::vector<Real> dC(n); + for (unsigned i = 0; i < n; i++) { + dC[i] = a[i] * (Δω / (2 * M_PI)); + } + + return dC; +} + std::vector<Real> FourierTransform::inverse(const std::vector<Complex>& ĉ) { - â = ĉ; + for (unsigned i = 0; i < n + 1; i++) { + â[i] = ĉ[i]; + } fftw_execute(plan_c2r); - std::vector<Real> c(a.size()); - for (unsigned i = 0; i < a.size(); i++) { + std::vector<Real> c(2*n); + for (unsigned i = 0; i < 2*n; i++) { c[i] = a[i] * (Δω / (2 * M_PI)); } return c; } +void FourierTransform::writeToA(unsigned i, Real ai) { + a[i] = ai; +} + std::string fourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real y, unsigned log2n, Real τₘₐₓ) { return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(y) + "_" + std::to_string(log2n) + "_" + std::to_string(τₘₐₓ) + ".dat"; } @@ -70,23 +92,25 @@ Real energy(const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, } std::tuple<std::vector<Complex>, std::vector<Complex>> RddfCtdfCt(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ) { - std::vector<Real> RddfC(C.size()); for (unsigned i = 0; i < C.size() / 2; i++) { - RddfC[i] = R[i] * ddf(λ, p, s, C[i]); + fft.writeToA(i, R[i] * ddf(λ, p, s, C[i])); + } + for (unsigned i = C.size() / 2; i < C.size(); i++) { + fft.writeToA(i, 0); } - std::vector<Complex> RddfCt = fft.fourier(RddfC); + std::vector<Complex> RddfCt = fft.fourier(); - std::vector<Real> dfC(C.size()); for (unsigned i = 0; i < C.size(); i++) { - dfC[i] = df(λ, p, s, C[i]); + fft.writeToA(i, df(λ, p, s, C[i])); } - std::vector<Complex> dfCt = fft.fourier(dfC); + std::vector<Complex> dfCt = fft.fourier(); return {RddfCt, dfCt}; } -Real estimateZ(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ct, const std::vector<Real>& R, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real y) { +Real estimateZ(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ct, const std::vector<Real>& R, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real y) { auto [RddfCt, dfCt] = RddfCtdfCt(fft, C, R, p, s, λ); + Real Γ₀ = 1 + τ₀ / 2; - return ((std::conj(Rt[0]) + pow(y, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real(); + return ((Γ₀ * std::conj(Rt[0]) + pow(y, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real(); } |