diff options
Diffstat (limited to 'fourier.cpp')
-rw-r--r-- | fourier.cpp | 125 |
1 files changed, 0 insertions, 125 deletions
diff --git a/fourier.cpp b/fourier.cpp deleted file mode 100644 index 3821623..0000000 --- a/fourier.cpp +++ /dev/null @@ -1,125 +0,0 @@ -#include "fourier.hpp" -#include "p-spin.hpp" -#include <fftw3.h> - -FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : n(n), Δω(Δω), Δτ(Δτ) { - a = fftw_alloc_real(2 * n); - â = reinterpret_cast<Complex*>(fftw_alloc_complex(n + 1)); -// fftw_init_threads(); -// fftw_plan_with_nthreads(FFTW_THREADS); - fftw_import_wisdom_from_filename("fftw.wisdom"); - plan_r2c = fftw_plan_dft_r2c_1d(2 * n, a, reinterpret_cast<fftw_complex*>(â), flags); - plan_c2r = fftw_plan_dft_c2r_1d(2 * n, reinterpret_cast<fftw_complex*>(â), a, flags); - fftw_export_wisdom_to_filename("fftw.wisdom"); -} - -FourierTransform::~FourierTransform() { - fftw_destroy_plan(plan_r2c); - fftw_destroy_plan(plan_c2r); - fftw_free(a); - fftw_free(â); - fftw_cleanup(); -} - -std::vector<Complex> FourierTransform::fourier(const std::vector<Real>& c) { - for (unsigned i = 0; i < 2 * n; i++) { - a[i] = c[i]; - } - fftw_execute(plan_r2c); - std::vector<Complex> ĉ(n + 1); - for (unsigned i = 0; i < n + 1; i++) { - ĉ[i] = â[i] * (Δτ * M_PI); - } - return ĉ; -} - -std::vector<Complex> FourierTransform::fourier() { - fftw_execute(plan_r2c); - std::vector<Complex> ĉ(n+1); - for (unsigned i = 0; i < n+1; i++) { - ĉ[i] = â[i] * (Δτ * M_PI); - } - return ĉ; -} - -std::vector<Real> FourierTransform::convolve(const std::vector<Real>& Γh, const std::vector<Real>& R) { - a[0] = 0; - for (unsigned i = 1; i < n; i++) { - a[i] = R[i]; - a[2 * n - i] = -R[i]; - } - fftw_execute(plan_r2c); - for (unsigned i = 1; i < n + 1; i++) { - â[i] *= Γh[i] * (Δτ * M_PI); - } - fftw_execute(plan_c2r); - std::vector<Real> dC(n); - for (unsigned i = 0; i < n; i++) { - dC[i] = a[i] * (Δω / (2 * M_PI)); - } - - return dC; -} - -std::vector<Real> FourierTransform::inverse(const std::vector<Complex>& ĉ) { - for (unsigned i = 0; i < n + 1; i++) { - â[i] = ĉ[i]; - } - fftw_execute(plan_c2r); - std::vector<Real> c(2*n); - for (unsigned i = 0; i < 2*n; i++) { - c[i] = a[i] * (Δω / (2 * M_PI)); - } - return c; -} - -void FourierTransform::writeToA(unsigned i, Real ai) { - a[i] = ai; -} - -std::string fourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real y, unsigned log2n, Real τₘₐₓ) { - return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(y) + "_" + std::to_string(log2n) + "_" + std::to_string(τₘₐₓ) + ".dat"; -} - -Real energy(const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ, Real y, Real Δτ) { - Real e = 0; - - for (unsigned n = 0; n < C.size() / 4 -1; n++) { - Real h₂ₙ = M_PI * Δτ; - Real h₂ₙ₊₁ = M_PI * Δτ; - Real f₂ₙ = R[2*n] * df(λ, p, s, C[2*n]); - Real f₂ₙ₊₁ = R[2*n+1] * df(λ, p, s, C[2*n+1]); - Real f₂ₙ₊₂ = R[2*n+2] * df(λ, p, s, C[2*n+2]); - e += (h₂ₙ + h₂ₙ₊₁) / 6 * ( - (2 - h₂ₙ₊₁ / h₂ₙ) * f₂ₙ - + pow(h₂ₙ + h₂ₙ₊₁, 2) / (h₂ₙ * h₂ₙ₊₁) * f₂ₙ₊₁ - + (2 - h₂ₙ / h₂ₙ₊₁) * f₂ₙ₊₂ - ); - } - - return y * e; -} - -std::tuple<std::vector<Complex>, std::vector<Complex>> RddfCtdfCt(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ) { - for (unsigned i = 0; i < C.size() / 2; i++) { - fft.writeToA(i, R[i] * ddf(λ, p, s, C[i])); - } - for (unsigned i = C.size() / 2; i < C.size(); i++) { - fft.writeToA(i, 0); - } - std::vector<Complex> RddfCt = fft.fourier(); - - for (unsigned i = 0; i < C.size(); i++) { - fft.writeToA(i, df(λ, p, s, C[i])); - } - std::vector<Complex> dfCt = fft.fourier(); - - return {RddfCt, dfCt}; -} - -Real estimateZ(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ct, const std::vector<Real>& R, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real y) { - auto [RddfCt, dfCt] = RddfCtdfCt(fft, C, R, p, s, λ); - Real Γ₀ = 1 + τ₀ / 2; - - return ((Γ₀ * std::conj(Rt[0]) + pow(y, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real(); -} |