summaryrefslogtreecommitdiff
path: root/fourier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'fourier.cpp')
-rw-r--r--fourier.cpp125
1 files changed, 0 insertions, 125 deletions
diff --git a/fourier.cpp b/fourier.cpp
deleted file mode 100644
index 3821623..0000000
--- a/fourier.cpp
+++ /dev/null
@@ -1,125 +0,0 @@
-#include "fourier.hpp"
-#include "p-spin.hpp"
-#include <fftw3.h>
-
-FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : n(n), Δω(Δω), Δτ(Δτ) {
- a = fftw_alloc_real(2 * n);
- â = reinterpret_cast<Complex*>(fftw_alloc_complex(n + 1));
-// fftw_init_threads();
-// fftw_plan_with_nthreads(FFTW_THREADS);
- fftw_import_wisdom_from_filename("fftw.wisdom");
- plan_r2c = fftw_plan_dft_r2c_1d(2 * n, a, reinterpret_cast<fftw_complex*>(â), flags);
- plan_c2r = fftw_plan_dft_c2r_1d(2 * n, reinterpret_cast<fftw_complex*>(â), a, flags);
- fftw_export_wisdom_to_filename("fftw.wisdom");
-}
-
-FourierTransform::~FourierTransform() {
- fftw_destroy_plan(plan_r2c);
- fftw_destroy_plan(plan_c2r);
- fftw_free(a);
- fftw_free(â);
- fftw_cleanup();
-}
-
-std::vector<Complex> FourierTransform::fourier(const std::vector<Real>& c) {
- for (unsigned i = 0; i < 2 * n; i++) {
- a[i] = c[i];
- }
- fftw_execute(plan_r2c);
- std::vector<Complex> ĉ(n + 1);
- for (unsigned i = 0; i < n + 1; i++) {
- ĉ[i] = â[i] * (Δτ * M_PI);
- }
- return ĉ;
-}
-
-std::vector<Complex> FourierTransform::fourier() {
- fftw_execute(plan_r2c);
- std::vector<Complex> ĉ(n+1);
- for (unsigned i = 0; i < n+1; i++) {
- ĉ[i] = â[i] * (Δτ * M_PI);
- }
- return ĉ;
-}
-
-std::vector<Real> FourierTransform::convolve(const std::vector<Real>& Γh, const std::vector<Real>& R) {
- a[0] = 0;
- for (unsigned i = 1; i < n; i++) {
- a[i] = R[i];
- a[2 * n - i] = -R[i];
- }
- fftw_execute(plan_r2c);
- for (unsigned i = 1; i < n + 1; i++) {
- â[i] *= Γh[i] * (Δτ * M_PI);
- }
- fftw_execute(plan_c2r);
- std::vector<Real> dC(n);
- for (unsigned i = 0; i < n; i++) {
- dC[i] = a[i] * (Δω / (2 * M_PI));
- }
-
- return dC;
-}
-
-std::vector<Real> FourierTransform::inverse(const std::vector<Complex>& ĉ) {
- for (unsigned i = 0; i < n + 1; i++) {
- â[i] = ĉ[i];
- }
- fftw_execute(plan_c2r);
- std::vector<Real> c(2*n);
- for (unsigned i = 0; i < 2*n; i++) {
- c[i] = a[i] * (Δω / (2 * M_PI));
- }
- return c;
-}
-
-void FourierTransform::writeToA(unsigned i, Real ai) {
- a[i] = ai;
-}
-
-std::string fourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real y, unsigned log2n, Real τₘₐₓ) {
- return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(y) + "_" + std::to_string(log2n) + "_" + std::to_string(τₘₐₓ) + ".dat";
-}
-
-Real energy(const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ, Real y, Real Δτ) {
- Real e = 0;
-
- for (unsigned n = 0; n < C.size() / 4 -1; n++) {
- Real h₂ₙ = M_PI * Δτ;
- Real h₂ₙ₊₁ = M_PI * Δτ;
- Real f₂ₙ = R[2*n] * df(λ, p, s, C[2*n]);
- Real f₂ₙ₊₁ = R[2*n+1] * df(λ, p, s, C[2*n+1]);
- Real f₂ₙ₊₂ = R[2*n+2] * df(λ, p, s, C[2*n+2]);
- e += (h₂ₙ + h₂ₙ₊₁) / 6 * (
- (2 - h₂ₙ₊₁ / h₂ₙ) * f₂ₙ
- + pow(h₂ₙ + h₂ₙ₊₁, 2) / (h₂ₙ * h₂ₙ₊₁) * f₂ₙ₊₁
- + (2 - h₂ₙ / h₂ₙ₊₁) * f₂ₙ₊₂
- );
- }
-
- return y * e;
-}
-
-std::tuple<std::vector<Complex>, std::vector<Complex>> RddfCtdfCt(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ) {
- for (unsigned i = 0; i < C.size() / 2; i++) {
- fft.writeToA(i, R[i] * ddf(λ, p, s, C[i]));
- }
- for (unsigned i = C.size() / 2; i < C.size(); i++) {
- fft.writeToA(i, 0);
- }
- std::vector<Complex> RddfCt = fft.fourier();
-
- for (unsigned i = 0; i < C.size(); i++) {
- fft.writeToA(i, df(λ, p, s, C[i]));
- }
- std::vector<Complex> dfCt = fft.fourier();
-
- return {RddfCt, dfCt};
-}
-
-Real estimateZ(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ct, const std::vector<Real>& R, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real y) {
- auto [RddfCt, dfCt] = RddfCtdfCt(fft, C, R, p, s, λ);
- Real Γ₀ = 1 + τ₀ / 2;
-
- return ((Γ₀ * std::conj(Rt[0]) + pow(y, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real();
-}