diff options
Diffstat (limited to 'integrator.cpp')
-rw-r--r-- | integrator.cpp | 185 |
1 files changed, 41 insertions, 144 deletions
diff --git a/integrator.cpp b/integrator.cpp index 8b13a9b..faba06d 100644 --- a/integrator.cpp +++ b/integrator.cpp @@ -1,112 +1,28 @@ +#include "fourier.hpp" #include <getopt.h> -#include <vector> -#include <cmath> #include <iostream> -using Real = double; - -unsigned p = 2; - -Real f(Real q) { - return 0.5 * pow(q, p); -} - -Real df(Real q) { - return 0.5 * p * pow(q, p - 1); -} - -Real ddf(Real q) { - return 0.5 * p * (p - 1) * pow(q, p - 2); -} - -Real integrate(const std::vector<Real>& C, signed τ = std::numeric_limits<unsigned>::max()) { +Real energy(const std::vector<Real>& C, std::vector<Real>& R, Real λ, unsigned p, unsigned s, Real Δτ) { Real I = 0; - if (τ > C.size() - 1) { - τ = C.size() - 1; - } -#pragma omp parallel for reduction(+:I) - for (unsigned σ = 0; σ < τ; σ++) { - unsigned τ_σ = τ - σ; - Real Cτ_σ = (C[τ_σ] + C[τ_σ - 1]) / 2; - Real dCσ = C[σ + 1] - C[σ]; - - I += df(Cτ_σ) * dCσ; - } - return I; -} - -Real integratePast(const std::vector<Real>& C, signed τ) { - Real I = 0; -#pragma omp parallel for reduction(+:I) - for (signed σ = -C.size() + τ + 3; σ < τ - 2; σ++) { - signed τ_σ = τ - σ; - - Real Cτ_σ = (C[abs(τ_σ)] + C[abs(τ_σ) - 1]) / 2; - Real Cσ = (C[abs(σ) + 1] + C[abs(σ)]) / 2; - Real dddC; - if (τ_σ != 0) { - dddC = (τ_σ / abs(τ_σ)) * (C[abs(τ_σ)+2] - 2 * C[abs(τ_σ)+1] + 2 * C[abs(τ_σ)-1] - C[abs(τ_σ)-2]) / 2; - } else { - dddC = 0; - } - - I += dddC * ddf(Cτ_σ) * Cσ; - } -#pragma omp parallel for reduction(+:I) - for (signed σ = -C.size() + τ + 3; σ < -1; σ++) { - signed τ_σ = τ - σ; - - Real Cτ_σ = (C[abs(τ_σ)] + C[abs(τ_σ) - 1]) / 2; - Real dddC; - if (σ != 0) { - dddC = -(σ / abs(σ)) * (C[abs(σ)+2] - 2 * C[abs(σ)+1] + 2 * C[abs(σ)-1] - C[abs(σ)-2]) / 2; - } else { - dddC = 0; - } - - I += dddC * df(Cτ_σ); - } - return I; -} - -Real integrateDelay(const std::vector<Real>& C, unsigned τ, Real Δτ, Real τ₀) { - Real I = 0; -#pragma omp parallel for reduction(+:I) - for (signed σ = 2; σ < C.size() - τ - 2; σ++) { - unsigned τ_σ = τ + σ; - Real dC = -(C[σ+1] - C[σ-1]) / 2; - Real dddC = -(C[σ+2] - 2 * C[σ+1] + 2 * C[σ-1] - C[σ-2]) / 2; - - I += (dC - pow(τ₀ / Δτ, 2) * dddC) * exp(-(τ_σ * Δτ / τ₀)); - } - return I / τ₀; -} - -Real energy(const std::vector<Real>& C, Real Δτ, Real τ₀) { - Real I = 0; - for (unsigned σ = 0; σ < C.size() - 1; σ++) { - Real Cσ = (C[σ] + C[σ + 1]) / 2; - Real dC = (C[σ + 1] - C[σ]) / Δτ; - - Real dddC = 0; - if (σ > 1 && σ < C.size() - 2 && C.size() > 3) { - dddC = (C[σ+1] - 3 * C[σ] + 3 * C[σ-1] - C[σ-2]) / pow(Δτ, 3); - } - I += Δτ * df(Cσ) * (dC - pow(τ₀, 2) * dddC); + for (unsigned σ = 0; σ < C.size(); σ++) { + I += Δτ * df(λ, p, s, C[σ]) * R[σ]; } return I; } int main(int argc, char* argv[]) { + unsigned p = 3; + unsigned s = 4; + Real λ = 0.5; Real Δτ = 1e-3; Real τₘₐₓ = 1e3; Real τ₀ = 0; - Real y = 0.5; + Real β = 0.5; unsigned iterations = 10; int opt; - while ((opt = getopt(argc, argv, "d:T:t:y:I:")) != -1) { + while ((opt = getopt(argc, argv, "d:T:t:b:I:")) != -1) { switch (opt) { case 'd': Δτ = atof(optarg); @@ -117,8 +33,8 @@ int main(int argc, char* argv[]) { case 't': τ₀ = atof(optarg); break; - case 'y': - y = atof(optarg); + case 'b': + β = atof(optarg); break; case 'I': iterations = (unsigned)atof(optarg); @@ -128,63 +44,44 @@ int main(int argc, char* argv[]) { } } - Real z = 0.4794707565634420155347; Real Γ₀ = 1; + Real μ = 1; + if (τ₀ > 0) { + μ = (sqrt(1+4*Γ₀*τ₀) - 1) / (2 * τ₀); + } Real τ = 0; - std::vector<Real> C; - C.reserve(τₘₐₓ / Δτ + 1); - - C.push_back(1); - -// while (std::cout << τ << " " << C.back() << std::endl, τ < τₘₐₓ) { - while (τ < τₘₐₓ) { - τ += Δτ; - Real dC = -(z - 2 * pow(y, 2)) * C.back() - 2 / Γ₀ * pow(y, 2) * integrate(C); - C.push_back(C.back() + Δτ * dC); + unsigned N = τₘₐₓ / Δτ + 1; + std::vector<Real> C(N); + std::vector<Real> R(N); + std::vector<Real> Γ(N); + + for (unsigned i = 0; i < N; i++) { + Real τ = i * Δτ; + if (τ₀ > 0) { + C[i] = (Γ₀ / μ) * (exp(-μ * τ) - μ * τ₀ * exp(-τ / τ₀)) / (1 - pow(μ * τ₀, 2)); + Γ[i] = (Γ₀ / τ₀) * exp(-τ / τ₀); + } else { + C[i] = (Γ₀ / μ) * exp(-μ * τ); + } + R[i] = exp(-μ * τ); } - for (unsigned it = 0; it < iterations; it++) { - - τ = 0; - std::vector<Real> C2; - C2.reserve(τₘₐₓ / Δτ + 1); - C2.push_back(1); - while (τ < τₘₐₓ) { - τ += Δτ; - Real dC = -(z - 2 * pow(y, 2)) * C2.back() + integrateDelay(C, C2.size() - 1, Δτ, τ₀) - 2 / Γ₀ * pow(y, 2) * (integrate(C2) - pow(τ₀ / Δτ, 2) * integratePast(C, C2.size()-1)); - C2.push_back(C2.back() + Δτ * dC); - } - - Real error = 0; - - for (unsigned i = 0; i < std::min(C.size(), C2.size()); i++) { - error += pow(C[i] - C2[i], 2); + /* First step: integrate R from C */ + std::vector<Real> R₊(N); + R₊[0] = 1; + for (unsigned i = 1; i < N; i++) { + Real I = 0; + for (unsigned j = 0; j <= i; j++) { + I += R[i - j] * ddf(λ, p, s, C[i - j]) * R[j] * Δτ; + } + Real dR = -μ * R[i] + pow(β, 2) * I; + R₊[i] = R₊[i - 1] + dR * Δτ; } - std::cerr << "Iteration " << it << ": " << sqrt(error / C.size()) << " " << z << std::endl; - - C = C2; - } - /* - Real zNew = (2.0 * ((C[2] - 2 * C[1] + C[0]) / pow(Δτ, 2) - pow(τ₀, 2) * (C[4] - 4 * C[3] + 6 * C[2] - 4 * C[1] + C[0]) / pow(Δτ, 4))); - Real zNew = (2.0 * ((C[2] - 2 * C[1] + C[0]) / pow(Δτ, 2) - pow(τ₀, 2) * (C[4] - 4 * C[3] + 6 * C[2] - 4 * C[1] + C[0]) / pow(Δτ, 4))); -// Real zNew = (2.0 * ((83 * C[6] - 245 * C[5] + 101 * C[4] + 254 * C[3] - 31 * C[2] - 377 * C[1] + 215 * C[0]) / (132 * pow(Δτ, 2)) - pow(τ₀, 2) * (3 * C[6] - 7 * C[5] + C[4] + 6 * C[3] + C[2] - 7 * C[1] + 3 * C[0]) / (11 * pow(Δτ, 4)))); - z = z / zNew; - τ = 0; - C.clear(); - C.reserve(τₘₐₓ / Δτ + 1); - - C.push_back(1); - -// while (std::cout << τ << " " << C.back() << std::endl, τ < τₘₐₓ) { - while (τ < τₘₐₓ) { - τ += Δτ; - Real dC = -z * C.back() - 2 / Γ₀ * pow(y, 2) * integrate(C); - C.push_back(C.back() + Δτ * dC); + /* Second step: integrate C from R */ } - */ τ = 0; for (Real Ci : C) { @@ -192,7 +89,7 @@ int main(int argc, char* argv[]) { τ += Δτ; } - std::cerr << - 2 * y / Γ₀ * energy(C, Δτ, τ₀) << std::endl; + std::cerr << - 2 * β / Γ₀ * energy(C, R, λ, p, s, Δτ) << std::endl; return 0; } |