diff options
Diffstat (limited to 'log-fourier_integrator.cpp')
-rw-r--r-- | log-fourier_integrator.cpp | 183 |
1 files changed, 120 insertions, 63 deletions
diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp index 177db46..4cd18ee 100644 --- a/log-fourier_integrator.cpp +++ b/log-fourier_integrator.cpp @@ -1,25 +1,31 @@ -#include "fourier.hpp" +#include "log-fourier.hpp" #include <getopt.h> #include <iostream> int main(int argc, char* argv[]) { + /* Model parameters */ unsigned p = 2; unsigned s = 2; Real λ = 0.5; Real τ₀ = 0; + /* Log-Fourier parameters */ unsigned log2n = 8; Real Δτ = 0.1; Real k = 0.1; - Real ε = 1e-16; - Real γ = 1; + /* Iteration parameters */ + Real ε = 1e-14; + Real γ₀ = 1; + Real β₀ = 0; Real βₘₐₓ = 0.7; Real Δβ = 0.01; + bool loadData = false; + unsigned stepsToRespond = 1000; int opt; - while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:")) != -1) { + while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:e:0:lS:")) != -1) { switch (opt) { case 'p': p = atoi(optarg); @@ -40,7 +46,7 @@ int main(int argc, char* argv[]) { Δβ = atof(optarg); break; case 'g': - γ = atof(optarg); + γ₀ = atof(optarg); break; case 'k': k = atof(optarg); @@ -48,6 +54,18 @@ int main(int argc, char* argv[]) { case 'D': Δτ = atof(optarg); break; + case 'e': + ε = atof(optarg); + break; + case '0': + β₀ = atof(optarg); + break; + case 'l': + loadData = true; + break; + case 'S': + stepsToRespond = atoi(optarg); + break; default: exit(1); } @@ -58,78 +76,117 @@ int main(int argc, char* argv[]) { LogarithmicFourierTransform fft(N, k, Δτ, 4); Real Γ₀ = 1.0; - Real μ = Γ₀; + Real μₜ₋₁ = Γ₀; if (τ₀ > 0) { - μ = (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀); + μₜ₋₁ = (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀); } - std::vector<Real> C(N); - std::vector<Real> R(N); - std::vector<Complex> Ct(N); - std::vector<Complex> Rt(N); + std::vector<Real> Cₜ₋₁(N); + std::vector<Real> Rₜ₋₁(N); + std::vector<Complex> Ĉₜ₋₁(N); + std::vector<Complex> Ȓₜ₋₁(N); - // start from the exact solution for β = 0 - for (unsigned n = 0; n < N; n++) { - if (τ₀ > 0) { - C[n] = Γ₀ * (exp(-μ * fft.t(n)) - μ * τ₀ * exp(-fft.t(n) / τ₀)) / (μ - pow(μ, 3) * pow(τ₀, 2)); - } else { - C[n] = Γ₀ * exp(-μ * fft.t(n)) / μ; + if (!loadData) { + /* Start from the exact solution for β = 0 */ + for (unsigned n = 0; n < N; n++) { + if (τ₀ > 0) { + if (τ₀ == 2) { + Cₜ₋₁[n] = Γ₀ * exp(-fft.t(n) / 2) * (1 + fft.t(n) / 2); + } else { + Cₜ₋₁[n] = Γ₀ * (exp(-μₜ₋₁ * fft.t(n)) - μₜ₋₁ * τ₀ * exp(-fft.t(n) / τ₀)) / (μₜ₋₁ - pow(μₜ₋₁, 3) * pow(τ₀, 2)); + } + } else { + Cₜ₋₁[n] = Γ₀ * exp(-μₜ₋₁ * fft.t(n)) / μₜ₋₁; + } + Rₜ₋₁[n] = exp(-μₜ₋₁ * fft.t(n)); + + Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μₜ₋₁, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2)); + Ȓₜ₋₁[n] = 1.0 / (μₜ₋₁ + 1i * fft.ν(n)); } - R[n] = exp(-μ * fft.t(n)); - - Ct[n] = 2 * Γ₀ / (pow(μ, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2)); - Rt[n] = 1.0 / (μ + 1i * fft.ν(n)); + } else { + logFourierLoad(Cₜ₋₁, Rₜ₋₁, Ĉₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀, log2n, Δτ, k); + μₜ₋₁ = estimateZ(fft, Cₜ₋₁, Ĉₜ₋₁, Rₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀); } - Real β = 0; + std::vector<Real> Cₜ = Cₜ₋₁; + std::vector<Real> Rₜ = Rₜ₋₁; + std::vector<Complex> Ĉₜ = Ĉₜ₋₁; + std::vector<Complex> Ȓₜ = Ȓₜ₋₁; + Real μₜ = μₜ₋₁; + + Real β = β₀ + Δβ; while (β < βₘₐₓ) { - Real ΔC = 100; - while (ΔC > ε) { - std::vector<Real> RddfC(N); - std::vector<Real> dfC(N); - for (unsigned n = 0; n < N; n++) { - RddfC[n] = R[n] * ddf(λ, p, s, C[n]); - dfC[n] = df(λ, p, s, C[n]); + Real γ = γ₀; + Real ΔCmin = 1000; + Real ΔCₜ = 100; + unsigned stepsUp = 0; + while (ΔCₜ > ε) { + auto [RddfCt, dfCt] = RddfCtdfCt(fft, Cₜ, Rₜ, p, s, λ); + + std::vector<Complex> Ĉₜ₊₁(N); + std::vector<Complex> Ȓₜ₊₁(N); + for (unsigned n = 0; n < N; n++) { + Ȓₜ₊₁[n] = (1.0 + pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μₜ + 1i * fft.ν(n)); + Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + 1i * fft.ν(n)); + } + std::vector<Real> Rₜ₊₁ = fft.inverse(Ȓₜ₊₁); + std::vector<Real> Cₜ₊₁ = fft.inverse(Ĉₜ₊₁); + + μₜ *= pow(tanh(Cₜ₊₁[0]-1)+1, 0.5); + + ΔCₜ = 0; + for (unsigned i = 0; i < N; i++) { + ΔCₜ += std::norm(Cₜ[i] - Cₜ₊₁[i]); + ΔCₜ += std::norm(Rₜ[i] - Rₜ₊₁[i]); + } + ΔCₜ = sqrt(ΔCₜ) / (2*N); + + if (ΔCₜ < 0.9 * ΔCmin) { + ΔCmin = ΔCₜ; + stepsUp = 0; + } else { + stepsUp++; + } + + if (stepsUp > stepsToRespond) { + γ = std::max(γ/2, 1e-4); + stepsUp = 0; + ΔCmin = ΔCₜ; + } + + for (unsigned i = 0; i < N; i++) { + Cₜ[i] += γ * (Cₜ₊₁[i] - Cₜ[i]); + Rₜ[i] += γ * (Rₜ₊₁[i] - Rₜ[i]); + Ĉₜ[i] += γ * (Ĉₜ₊₁[i] - Ĉₜ[i]); + Ȓₜ[i] += γ * (Ȓₜ₊₁[i] - Ȓₜ[i]); + } + + std::cerr << "\x1b[2K" << "\r"; + std::cerr << β << " " << μₜ << " " << ΔCₜ << " " << γ << " " << Cₜ[0]; } - std::vector<Complex> RddfCt = fft.fourier(RddfC, false); - std::vector<Complex> dfCt = fft.fourier(dfC, true); - - std::vector<Complex> Rtnew(N); - std::vector<Complex> Ctnew(N); - for (unsigned n = 0; n < N; n++) { - Rtnew[n] = (1.0 + pow(β, 2) * RddfCt[n] * Rt[n]) / (μ + 1i * fft.ν(n)); - Ctnew[n] = (2 * Γ₀ * std::conj(Rt[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ct[n] + dfCt[n] * std::conj(Rt[n]))) / (μ + 1i * fft.ν(n)); - } + if (std::isnan(Cₜ[0])) { + γ₀ /= 2; + Cₜ = Cₜ₋₁; + Rₜ = Rₜ₋₁; + Ĉₜ = Ĉₜ₋₁; + Ȓₜ = Ȓₜ₋₁; + μₜ = μₜ₋₁; + } else { + Real E = energy(fft, Cₜ, Rₜ, p, s, λ, β); - std::vector<Real> Cnew = fft.inverse(Ctnew); - std::vector<Real> Rnew = fft.inverse(Rtnew); + std::cerr << "\x1b[2K" << "\r"; + std::cerr << β << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl; - ΔC = 0; - for (unsigned i = 0; i < N; i++) { - ΔC += std::norm(Ct[i] - Ctnew[i]); - ΔC += std::norm(Rt[i] - Rtnew[i]); - } - ΔC = sqrt(ΔC) / (2*N); + logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, k); - for (unsigned i = 0; i < N; i++) { - C[i] += γ * (Cnew[i] - C[i]); - R[i] += γ * (Rnew[i] - R[i]); - Ct[i] += γ * (Ctnew[i] - Ct[i]); - Rt[i] += γ * (Rtnew[i] - Rt[i]); + β += Δβ; + Cₜ₋₁ = Cₜ; + Rₜ₋₁ = Rₜ; + Ĉₜ₋₁ = Ĉₜ; + Ȓₜ₋₁ = Ȓₜ; + μₜ₋₁ = μₜ; } - - μ *= C[0]; - -// std::cerr << ΔC << std::endl; - } - - std::cerr << β << " " << μ << " " << Ct[0].real() << std::endl; - β += Δβ; - } - - for (unsigned i = 0; i < N; i++) { - std::cout << fft.t(i) << " " << Rt[i].imag() << std::endl; } return 0; |