summaryrefslogtreecommitdiff
path: root/log-fourier_integrator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'log-fourier_integrator.cpp')
-rw-r--r--log-fourier_integrator.cpp238
1 files changed, 238 insertions, 0 deletions
diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp
new file mode 100644
index 0000000..e13cf1b
--- /dev/null
+++ b/log-fourier_integrator.cpp
@@ -0,0 +1,238 @@
+#include "log-fourier.hpp"
+
+#include <getopt.h>
+#include <iostream>
+#include <iomanip>
+
+int main(int argc, char* argv[]) {
+ /* Model parameters */
+ unsigned p = 2;
+ unsigned s = 2;
+ Real λ = 0.5;
+ Real τ₀ = 0;
+
+ /* Log-Fourier parameters */
+ unsigned log2n = 8;
+ Real Δτ = 0.1;
+ Real k = -0.01;
+ Real logShift = 0;
+ bool shiftSquare = false;
+
+ /* Iteration parameters */
+ Real ε = 1e-15;
+ Real γ₀ = 1;
+ Real x = 1;
+ Real β₀ = 0;
+ Real βₘₐₓ = 20;
+ Real Δβ = 0.01;
+ bool loadData = false;
+ unsigned pad = 2;
+
+ int opt;
+
+ while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:k:D:e:0:lg:x:P:h:S")) != -1) {
+ switch (opt) {
+ case 'p':
+ p = atoi(optarg);
+ break;
+ case 's':
+ s = atoi(optarg);
+ break;
+ case '2':
+ log2n = atoi(optarg);
+ break;
+ case 't':
+ τ₀ = atof(optarg);
+ break;
+ case 'b':
+ βₘₐₓ = atof(optarg);
+ break;
+ case 'd':
+ Δβ = atof(optarg);
+ break;
+ case 'g':
+ γ₀ = atof(optarg);
+ break;
+ case 'k':
+ k = atof(optarg);
+ break;
+ case 'h':
+ logShift = atof(optarg);
+ break;
+ case 'D':
+ Δτ = atof(optarg);
+ break;
+ case 'e':
+ ε = atof(optarg);
+ break;
+ case '0':
+ β₀ = atof(optarg);
+ break;
+ case 'x':
+ x = atof(optarg);
+ break;
+ case 'P':
+ pad = atoi(optarg);
+ break;
+ case 'l':
+ loadData = true;
+ break;
+ case 'S':
+ shiftSquare = true;
+ break;
+ default:
+ exit(1);
+ }
+ }
+
+ unsigned N = pow(2, log2n);
+
+ Real Γ₀ = 1;
+ Real μ₀ = τ₀ > 0 ? (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀) : Γ₀;
+
+ Real shift = μ₀ * pow(10, logShift);
+ if (shiftSquare) shift *= μ₀;
+ LogarithmicFourierTransform fft(N, k, Δτ, pad, shift);
+
+ std::cerr << "Starting, μ₀ = " << μ₀ << ", range " << fft.t(0) << " " << fft.t(N-1) << std::endl;
+
+ Real μₜ₋₁ = μ₀;
+
+ std::vector<Real> Cₜ₋₁(N);
+ std::vector<Real> Rₜ₋₁(N);
+ std::vector<Complex> Ĉₜ₋₁(N);
+ std::vector<Complex> Ȓₜ₋₁(N);
+ std::vector<Real> Γ(N);
+
+ for (unsigned n = 0; n < N; n++) {
+ Γ[n] = Γ₀ / (1 + std::pow(τ₀ * fft.ν(n), 2));
+ }
+
+ if (!loadData) {
+ /* Start from the exact solution for β = 0 */
+ for (unsigned n = 0; n < N; n++) {
+ if (τ₀ > 0) {
+ if (τ₀ == 2) {
+ Cₜ₋₁[n] = Γ₀ * std::exp(-fft.t(n) / 2) * (1 + fft.t(n) / 2);
+ } else {
+ Cₜ₋₁[n] = Γ₀ * (std::exp(-μ₀ * fft.t(n)) / μ₀ - τ₀ * std::exp(-fft.t(n) / τ₀)) / (1 - pow(μ₀ * τ₀, 2));
+ }
+ } else {
+ Cₜ₋₁[n] = Γ₀ * std::exp(-μ₀ * fft.t(n)) / μ₀;
+ }
+ Rₜ₋₁[n] = std::exp(-μ₀ * fft.t(n));
+
+ Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μ₀, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2));
+ Ȓₜ₋₁[n] = (Real)1 / (μ₀ + II * fft.ν(n));
+ }
+ } else {
+ if (!logFourierLoad(Cₜ₋₁, Rₜ₋₁, Ĉₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀, log2n, Δτ, logShift)) {
+ return 1;
+ }
+ μₜ₋₁ = estimateZ(fft, Cₜ₋₁, Ĉₜ₋₁, Rₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀);
+ }
+
+ std::vector<Real> Cₜ = Cₜ₋₁;
+ std::vector<Real> Rₜ = Rₜ₋₁;
+ std::vector<Complex> Ĉₜ = Ĉₜ₋₁;
+ std::vector<Complex> Ȓₜ = Ȓₜ₋₁;
+ Real μₜ = μₜ₋₁;
+
+ Real β = β₀ + Δβ;
+ while (β < βₘₐₓ) {
+ Real γ = γ₀;
+ Real ΔCₜ = 100;
+ Real ΔCₜ₋₁ = 101;
+ while (ΔCₜ > ε) {
+ auto [Σ, D] = ΣD(fft, Cₜ, Rₜ, β, p, s, λ);
+
+ std::vector<Complex> Ĉₜ₊₁(N);
+ std::vector<Complex> Ȓₜ₊₁(N);
+
+ Real C₀ = 0;
+ Real μ₊ = 0;
+ Real μ₋ = 0;
+
+ while (std::abs(C₀ - 1) > ε) {
+ for (unsigned n = 0; n < N; n++) {
+ Ĉₜ₊₁[n] = (((2 * Γ[n] + D[n]) * std::conj(Ȓₜ[n]) + Σ[n] * Ĉₜ[n]) / (μₜ + II * fft.ν(n))).real();
+ }
+ C₀ = C0(fft, Ĉₜ₊₁);
+ if (C₀ > 1) {
+ μ₋ = μₜ;
+ } else {
+ μ₊ = μₜ;
+ }
+ if (μ₋ > 0 && μ₊ > 0) {
+ μₜ = (μ₊ + μ₋) / 2;
+ } else {
+ μₜ *= pow(tanh(C₀-1)+1, x);
+ }
+ }
+
+ ΔCₜ = 0;
+ for (unsigned n = 0; n < N; n++) {
+ ΔCₜ += std::norm(((2 * Γ[n] + D[n]) * std::conj(Ȓₜ[n]) + Σ[n] * Ĉₜ[n]) - Ĉₜ[n] * (μₜ + II * fft.ν(n)));
+ ΔCₜ += std::norm(((Real)1 + Σ[n] * Ȓₜ[n]) - Ȓₜ[n] * (μₜ + II * fft.ν(n)));
+ }
+ ΔCₜ = sqrt(ΔCₜ) / (2*N);
+
+ for (unsigned n = 0; n < N; n++) {
+ Ȓₜ₊₁[n] = ((Real)1 + Σ[n] * Ȓₜ[n]) / (μₜ + II * fft.ν(n));
+ }
+
+ std::vector<Real> Cₜ₊₁ = fft.inverse(Ĉₜ₊₁);
+ std::vector<Real> Rₜ₊₁ = fft.inverse(Ȓₜ₊₁);
+
+ smooth(Cₜ₊₁, ε);
+ smooth(Rₜ₊₁, ε);
+
+ for (unsigned i = 0; i < N; i++) {
+ Cₜ[i] += γ * (Cₜ₊₁[i] - Cₜ[i]);
+ Rₜ[i] += γ * (Rₜ₊₁[i] - Rₜ[i]);
+ Ĉₜ[i] += γ * (Ĉₜ₊₁[i] - Ĉₜ[i]);
+ Ȓₜ[i] += γ * (Ȓₜ₊₁[i] - Ȓₜ[i]);
+ }
+
+ if (ΔCₜ > ΔCₜ₋₁ * 2 && ΔCₜ < 1e-10) {
+ γ = std::max(γ / 2, (Real)1e-2);
+ }
+
+ ΔCₜ₋₁ = ΔCₜ;
+
+ std::cerr << "\x1b[2K" << "\r";
+ std::cerr << std::setprecision(7) << β << " " << Δβ << " " << μₜ << " " << ΔCₜ << " " << γ;
+ }
+
+ if (std::isnan(ΔCₜ)) {
+ β -= Δβ;
+ Δβ *= 0.1;
+ β += Δβ;
+ Cₜ = Cₜ₋₁;
+ Rₜ = Rₜ₋₁;
+ Ĉₜ = Ĉₜ₋₁;
+ Ȓₜ = Ȓₜ₋₁;
+ μₜ = μₜ₋₁;
+ } else {
+ Real E = energy(fft, Cₜ, Rₜ, p, s, λ, β);
+
+ std::cerr << "\x1b[2K" << "\r";
+ std::cerr << std::setprecision(7) << β << " " << Δβ << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << std::endl;
+
+ logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, logShift);
+
+ if (Ĉₜ[0].real() / Ĉₜ₋₁[0].real() > 1.25) {
+ Δβ = std::round(1e6 * Δβ / 2) / 1e6;
+ }
+
+ β = std::round(1e6 * (β + Δβ)) / 1e6;
+ Cₜ₋₁ = Cₜ;
+ Rₜ₋₁ = Rₜ;
+ Ĉₜ₋₁ = Ĉₜ;
+ Ȓₜ₋₁ = Ȓₜ;
+ μₜ₋₁ = μₜ;
+ }
+ }
+
+ return 0;
+}