diff options
Diffstat (limited to 'log-fourier_integrator.cpp')
-rw-r--r-- | log-fourier_integrator.cpp | 162 |
1 files changed, 162 insertions, 0 deletions
diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp new file mode 100644 index 0000000..fd8b220 --- /dev/null +++ b/log-fourier_integrator.cpp @@ -0,0 +1,162 @@ +#include "log-fourier.hpp" +#include "p-spin.hpp" +#include <getopt.h> +#include <iostream> + +int main(int argc, char* argv[]) { + unsigned p = 2; + unsigned s = 2; + Real λ = 0.5; + Real τ₀ = 0; + + unsigned log2n = 8; + Real Δτ = 0.1; + Real k = 0.1; + + Real ε = 1e-13; + Real γ = 1; + Real βₘₐₓ = 0.7; + Real Δβ = 0.01; + + int opt; + + while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:")) != -1) { + switch (opt) { + case 'p': + p = atoi(optarg); + break; + case 's': + s = atoi(optarg); + break; + case '2': + log2n = atoi(optarg); + break; + case 't': + τ₀ = atof(optarg); + break; + case 'b': + βₘₐₓ = atof(optarg); + break; + case 'd': + Δβ = atof(optarg); + break; + case 'g': + γ = atof(optarg); + break; + case 'k': + k = atof(optarg); + break; + case 'D': + Δτ = atof(optarg); + break; + default: + exit(1); + } + } + + unsigned N = pow(2, log2n); + + LogarithmicFourierTransform fft(N, k, Δτ, 4); + + Real Γ₀ = 1.0; + Real μ = Γ₀; + if (τ₀ > 0) { + μ = (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀); + } + + std::vector<Real> C(N); + std::vector<Real> R(N); + std::vector<Complex> Ct(N); + std::vector<Complex> Rt(N); + + // start from the exact solution for β = 0 + for (unsigned n = 0; n < N; n++) { + if (τ₀ > 0) { + C[n] = Γ₀ * (exp(-μ * fft.t(n)) - μ * τ₀ * exp(-fft.t(n) / τ₀)) / (μ - pow(μ, 3) * pow(τ₀, 2)); + } else { + C[n] = Γ₀ * exp(-μ * fft.t(n)) / μ; + } + R[n] = exp(-μ * fft.t(n)); + + Ct[n] = 2 * Γ₀ / (pow(μ, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2)); + Rt[n] = 1.0 / (μ + 1i * fft.ν(n)); + } + + Real β = 0; + while (β < βₘₐₓ) { + Real ΔC = 100; + while (ΔC > ε) { + std::vector<Real> RddfC(N); + std::vector<Real> dfC(N); + for (unsigned n = 0; n < N; n++) { + RddfC[n] = R[n] * ddf(λ, p, s, C[n]); + dfC[n] = df(λ, p, s, C[n]); + } + std::vector<Complex> RddfCt = fft.fourier(RddfC, false); + std::vector<Complex> dfCt = fft.fourier(dfC, true); + + std::vector<Complex> Rtnew(N); + std::vector<Complex> Ctnew(N); + + for (unsigned n = 0; n < N; n++) { + Rtnew[n] = (1.0 + pow(β, 2) * RddfCt[n] * Rt[n]) / (μ + 1i * fft.ν(n)); +// Ctnew[n] = - 2 * Γ₀ * Rtnew[n].imag() / (1 + pow(τ₀ * fft.ν(n), 2)) / fft.ν(n); + } + std::vector<Real> Rnew = fft.inverse(Rtnew); + for (unsigned n = 0; n < N; n++) { + RddfC[n] = Rnew[n] * ddf(λ, p, s, C[n]); + } + RddfCt = fft.fourier(RddfC, false); + + for (unsigned n = 0; n < N; n++) { + Ctnew[n] = (2 * Γ₀ * std::conj(Rtnew[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ct[n] + dfCt[n] * std::conj(Rtnew[n]))) / (μ + 1i * fft.ν(n)); + } + + + std::vector<Real> Cnew = fft.inverse(Ctnew); + + ΔC = 0; + for (unsigned i = 0; i < N; i++) { + ΔC += std::norm(Ct[i] - Ctnew[i]); + ΔC += std::norm(Rt[i] - Rtnew[i]); + } + ΔC = sqrt(ΔC) / (2*N); + + for (unsigned i = 0; i < N; i++) { + C[i] += γ * (Cnew[i] - C[i]); + R[i] += γ * (Rnew[i] - R[i]); + Ct[i] += γ * (Ctnew[i] - Ct[i]); + Rt[i] += γ * (Rtnew[i] - Rt[i]); + } + + μ *= C[0]; + +// std::cerr << ΔC << std::endl; + } + + /* Integrate the energy using Simpson's rule */ + Real E = 0; + for (unsigned i = 0; i < N/2-1; i++) { + Real h₂ᵢ = fft.t(2*i+1) - fft.t(2*i); + Real h₂ᵢ₊₁ = fft.t(2*i+2) - fft.t(2*i+1); + Real f₂ᵢ = R[2*i] * df(λ, p, s, C[2*i]); + Real f₂ᵢ₊₁ = R[2*i+1] * df(λ, p, s, C[2*i+1]); + Real f₂ᵢ₊₂ = R[2*i+2] * df(λ, p, s, C[2*i+2]); + E += (h₂ᵢ + h₂ᵢ₊₁) / 6 * ( + (2 - h₂ᵢ₊₁ / h₂ᵢ) * f₂ᵢ + + pow(h₂ᵢ + h₂ᵢ₊₁, 2) / (h₂ᵢ * h₂ᵢ₊₁) * f₂ᵢ₊₁ + + (2 - h₂ᵢ / h₂ᵢ₊₁) * f₂ᵢ₊₂ + ); + } + E *= β; + + std::cerr << β << " " << μ << " " << Ct[0].real() << " " << E << std::endl; + β += Δβ; + } + + for (unsigned i = 0; i < N; i++) { + std::cout << fft.t(i) << " " << C[i] << std::endl; + } + + return 0; +} |