summaryrefslogtreecommitdiff
path: root/log-fourier_integrator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'log-fourier_integrator.cpp')
-rw-r--r--log-fourier_integrator.cpp162
1 files changed, 162 insertions, 0 deletions
diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp
new file mode 100644
index 0000000..fd8b220
--- /dev/null
+++ b/log-fourier_integrator.cpp
@@ -0,0 +1,162 @@
+#include "log-fourier.hpp"
+#include "p-spin.hpp"
+#include <getopt.h>
+#include <iostream>
+
+int main(int argc, char* argv[]) {
+ unsigned p = 2;
+ unsigned s = 2;
+ Real λ = 0.5;
+ Real τ₀ = 0;
+
+ unsigned log2n = 8;
+ Real Δτ = 0.1;
+ Real k = 0.1;
+
+ Real ε = 1e-13;
+ Real γ = 1;
+ Real βₘₐₓ = 0.7;
+ Real Δβ = 0.01;
+
+ int opt;
+
+ while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:")) != -1) {
+ switch (opt) {
+ case 'p':
+ p = atoi(optarg);
+ break;
+ case 's':
+ s = atoi(optarg);
+ break;
+ case '2':
+ log2n = atoi(optarg);
+ break;
+ case 't':
+ τ₀ = atof(optarg);
+ break;
+ case 'b':
+ βₘₐₓ = atof(optarg);
+ break;
+ case 'd':
+ Δβ = atof(optarg);
+ break;
+ case 'g':
+ γ = atof(optarg);
+ break;
+ case 'k':
+ k = atof(optarg);
+ break;
+ case 'D':
+ Δτ = atof(optarg);
+ break;
+ default:
+ exit(1);
+ }
+ }
+
+ unsigned N = pow(2, log2n);
+
+ LogarithmicFourierTransform fft(N, k, Δτ, 4);
+
+ Real Γ₀ = 1.0;
+ Real μ = Γ₀;
+ if (τ₀ > 0) {
+ μ = (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀);
+ }
+
+ std::vector<Real> C(N);
+ std::vector<Real> R(N);
+ std::vector<Complex> Ct(N);
+ std::vector<Complex> Rt(N);
+
+ // start from the exact solution for β = 0
+ for (unsigned n = 0; n < N; n++) {
+ if (τ₀ > 0) {
+ C[n] = Γ₀ * (exp(-μ * fft.t(n)) - μ * τ₀ * exp(-fft.t(n) / τ₀)) / (μ - pow(μ, 3) * pow(τ₀, 2));
+ } else {
+ C[n] = Γ₀ * exp(-μ * fft.t(n)) / μ;
+ }
+ R[n] = exp(-μ * fft.t(n));
+
+ Ct[n] = 2 * Γ₀ / (pow(μ, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2));
+ Rt[n] = 1.0 / (μ + 1i * fft.ν(n));
+ }
+
+ Real β = 0;
+ while (β < βₘₐₓ) {
+ Real ΔC = 100;
+ while (ΔC > ε) {
+ std::vector<Real> RddfC(N);
+ std::vector<Real> dfC(N);
+ for (unsigned n = 0; n < N; n++) {
+ RddfC[n] = R[n] * ddf(λ, p, s, C[n]);
+ dfC[n] = df(λ, p, s, C[n]);
+ }
+ std::vector<Complex> RddfCt = fft.fourier(RddfC, false);
+ std::vector<Complex> dfCt = fft.fourier(dfC, true);
+
+ std::vector<Complex> Rtnew(N);
+ std::vector<Complex> Ctnew(N);
+
+ for (unsigned n = 0; n < N; n++) {
+ Rtnew[n] = (1.0 + pow(β, 2) * RddfCt[n] * Rt[n]) / (μ + 1i * fft.ν(n));
+// Ctnew[n] = - 2 * Γ₀ * Rtnew[n].imag() / (1 + pow(τ₀ * fft.ν(n), 2)) / fft.ν(n);
+ }
+ std::vector<Real> Rnew = fft.inverse(Rtnew);
+ for (unsigned n = 0; n < N; n++) {
+ RddfC[n] = Rnew[n] * ddf(λ, p, s, C[n]);
+ }
+ RddfCt = fft.fourier(RddfC, false);
+
+ for (unsigned n = 0; n < N; n++) {
+ Ctnew[n] = (2 * Γ₀ * std::conj(Rtnew[n]) / (1 + pow(τ₀ * fft.ν(n), 2)) + pow(β, 2) * (RddfCt[n] * Ct[n] + dfCt[n] * std::conj(Rtnew[n]))) / (μ + 1i * fft.ν(n));
+ }
+
+
+ std::vector<Real> Cnew = fft.inverse(Ctnew);
+
+ ΔC = 0;
+ for (unsigned i = 0; i < N; i++) {
+ ΔC += std::norm(Ct[i] - Ctnew[i]);
+ ΔC += std::norm(Rt[i] - Rtnew[i]);
+ }
+ ΔC = sqrt(ΔC) / (2*N);
+
+ for (unsigned i = 0; i < N; i++) {
+ C[i] += γ * (Cnew[i] - C[i]);
+ R[i] += γ * (Rnew[i] - R[i]);
+ Ct[i] += γ * (Ctnew[i] - Ct[i]);
+ Rt[i] += γ * (Rtnew[i] - Rt[i]);
+ }
+
+ μ *= C[0];
+
+// std::cerr << ΔC << std::endl;
+ }
+
+ /* Integrate the energy using Simpson's rule */
+ Real E = 0;
+ for (unsigned i = 0; i < N/2-1; i++) {
+ Real h₂ᵢ = fft.t(2*i+1) - fft.t(2*i);
+ Real h₂ᵢ₊₁ = fft.t(2*i+2) - fft.t(2*i+1);
+ Real f₂ᵢ = R[2*i] * df(λ, p, s, C[2*i]);
+ Real f₂ᵢ₊₁ = R[2*i+1] * df(λ, p, s, C[2*i+1]);
+ Real f₂ᵢ₊₂ = R[2*i+2] * df(λ, p, s, C[2*i+2]);
+ E += (h₂ᵢ + h₂ᵢ₊₁) / 6 * (
+ (2 - h₂ᵢ₊₁ / h₂ᵢ) * f₂ᵢ
+ + pow(h₂ᵢ + h₂ᵢ₊₁, 2) / (h₂ᵢ * h₂ᵢ₊₁) * f₂ᵢ₊₁
+ + (2 - h₂ᵢ / h₂ᵢ₊₁) * f₂ᵢ₊₂
+ );
+ }
+ E *= β;
+
+ std::cerr << β << " " << μ << " " << Ct[0].real() << " " << E << std::endl;
+ β += Δβ;
+ }
+
+ for (unsigned i = 0; i < N; i++) {
+ std::cout << fft.t(i) << " " << C[i] << std::endl;
+ }
+
+ return 0;
+}