summaryrefslogtreecommitdiff
path: root/log-fourier_integrator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'log-fourier_integrator.cpp')
-rw-r--r--log-fourier_integrator.cpp105
1 files changed, 55 insertions, 50 deletions
diff --git a/log-fourier_integrator.cpp b/log-fourier_integrator.cpp
index 7569245..94987f3 100644
--- a/log-fourier_integrator.cpp
+++ b/log-fourier_integrator.cpp
@@ -87,59 +87,64 @@ int main(int argc, char* argv[]) {
Real β = 0;
while (β < βₘₐₓ) {
- Real ΔC = 100;
- Real ΔC₀ = 100;
- unsigned it = 0;
- while (ΔC > ε) {
- std::vector<Real> RddfC(N);
- for (unsigned n = 0; n < N; n++) {
- RddfC[n] = Rₜ[n] * ddf(λ, p, s, Cₜ[n]);
+ while (true) {
+ Real ΔC = 100;
+ Real ΔC₀ = 100;
+ unsigned it = 0;
+ while (ΔC > ε) {
+ std::vector<Real> RddfC(N);
+ for (unsigned n = 0; n < N; n++) {
+ RddfC[n] = Rₜ[n] * ddf(λ, p, s, Cₜ[n]);
+ }
+ std::vector<Complex> RddfCt = fft.fourier(RddfC, false);
+
+ std::vector<Complex> Ȓₜ₊₁(N);
+ std::vector<Complex> Ĉₜ₊₁(N);
+
+ for (unsigned n = 0; n < N; n++) {
+ Ȓₜ₊₁[n] = (1.0 + pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μ + 1i * fft.ν(n));
+ Ĉₜ₊₁[n] = - 2 * Γ₀ * Ȓₜ₊₁[n].imag() / (1 + pow(τ₀ * fft.ν(n), 2)) / fft.ν(n);
+ }
+
+ std::vector<Real> Rₜ₊₁ = fft.inverse(Ȓₜ₊₁);
+ std::vector<Real> Cₜ₊₁ = fft.inverse(Ĉₜ₊₁);
+
+ ΔC = 0;
+ for (unsigned i = 0; i < N; i++) {
+ ΔC += std::norm(Ĉₜ[i] - Ĉₜ₊₁[i]);
+ ΔC += std::norm(Ȓₜ[i] - Ȓₜ₊₁[i]);
+ }
+ ΔC = sqrt(ΔC) / (2*N);
+
+ for (unsigned i = 0; i < N; i++) {
+ Cₜ[i] += γ * (Cₜ₊₁[i] - Cₜ[i]);
+ Rₜ[i] += γ * (Rₜ₊₁[i] - Rₜ[i]);
+ Ĉₜ[i] += γ * (Ĉₜ₊₁[i] - Ĉₜ[i]);
+ Ȓₜ[i] += γ * (Ȓₜ₊₁[i] - Ȓₜ[i]);
+ }
+
+ if (ΔC < ΔC₀) {
+ ΔC₀ = ΔC;
+ it = 0;
+ γ = std::min(1.001 * γ, 1.0);
+ } else {
+ it++;
+ }
+
+ if (it > 100) {
+ γ = std::max(0.5 * γ, 1e-3);
+ it = 0;
+ ΔC₀ = ΔC;
+ }
+
+ std::cerr << β << " " << μ << " " << ΔC << " " << γ;
+ std::cerr << "\r";
}
- std::vector<Complex> RddfCt = fft.fourier(RddfC, false);
-
- std::vector<Complex> Ȓₜ₊₁(N);
- std::vector<Complex> Ĉₜ₊₁(N);
-
- for (unsigned n = 0; n < N; n++) {
- Ȓₜ₊₁[n] = (1.0 + pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μ + 1i * fft.ν(n));
- Ĉₜ₊₁[n] = - 2 * Γ₀ * Ȓₜ₊₁[n].imag() / (1 + pow(τ₀ * fft.ν(n), 2)) / fft.ν(n);
- }
-
- std::vector<Real> Rₜ₊₁ = fft.inverse(Ȓₜ₊₁);
- std::vector<Real> Cₜ₊₁ = fft.inverse(Ĉₜ₊₁);
-
- ΔC = 0;
- for (unsigned i = 0; i < N; i++) {
- ΔC += std::norm(Ĉₜ[i] - Ĉₜ₊₁[i]);
- ΔC += std::norm(Ȓₜ[i] - Ȓₜ₊₁[i]);
- }
- ΔC = sqrt(ΔC) / (2*N);
-
- for (unsigned i = 0; i < N; i++) {
- Cₜ[i] += γ * (Cₜ₊₁[i] - Cₜ[i]);
- Rₜ[i] += γ * (Rₜ₊₁[i] - Rₜ[i]);
- Ĉₜ[i] += γ * (Ĉₜ₊₁[i] - Ĉₜ[i]);
- Ȓₜ[i] += γ * (Ȓₜ₊₁[i] - Ȓₜ[i]);
- }
-
- μ = γ * μ * Cₜ[0] + (1-γ) * μ;
-
- if (ΔC < ΔC₀) {
- ΔC₀ = ΔC;
- it = 0;
- γ = std::min(1.001 * γ, 1.0);
+ if (std::abs(Cₜ[0] - 1) < ε) {
+ break;
} else {
- it++;
+ μ *= Cₜ[0];
}
-
- if (it > 100) {
- γ = std::max(0.5 * γ, 1e-3);
- it = 0;
- ΔC₀ = ΔC;
- }
-
- std::cerr << β << " " << μ << " " << ΔC << " " << γ;
- std::cerr << "\r";
}
/* Integrate the energy using Simpson's rule */