summaryrefslogtreecommitdiff
path: root/log_get_energy.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'log_get_energy.cpp')
-rw-r--r--log_get_energy.cpp100
1 files changed, 100 insertions, 0 deletions
diff --git a/log_get_energy.cpp b/log_get_energy.cpp
new file mode 100644
index 0000000..d156fd4
--- /dev/null
+++ b/log_get_energy.cpp
@@ -0,0 +1,100 @@
+#include "log-fourier.hpp"
+
+#include <getopt.h>
+#include <iostream>
+#include <iomanip>
+#include <filesystem>
+
+int main(int argc, char* argv[]) {
+ /* Model parameters */
+ unsigned p = 2;
+ unsigned s = 2;
+ Real λ = 0.5;
+ Real τ₀ = 0;
+
+ /* Log-Fourier parameters */
+ unsigned log2n = 8;
+ Real Δτ = 0.1;
+ Real k = 0.1;
+ unsigned pad = 2;
+ Real logShift = 0;
+ bool shiftSquare = false;
+
+ /* Iteration parameters */
+ Real β₀ = 0;
+ Real βₘₐₓ = 0.7;
+ Real Δβ = 0.01;
+
+ int opt;
+
+ while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:k:h:D:0:S")) != -1) {
+ switch (opt) {
+ case 'p':
+ p = atoi(optarg);
+ break;
+ case 's':
+ s = atoi(optarg);
+ break;
+ case '2':
+ log2n = atoi(optarg);
+ break;
+ case 't':
+ τ₀ = atof(optarg);
+ break;
+ case 'b':
+ βₘₐₓ = atof(optarg);
+ break;
+ case 'd':
+ Δβ = atof(optarg);
+ break;
+ case 'k':
+ k = atof(optarg);
+ break;
+ case 'h':
+ logShift = atof(optarg);
+ break;
+ case 'D':
+ Δτ = atof(optarg);
+ break;
+ case '0':
+ β₀ = atof(optarg);
+ break;
+ case 'S':
+ shiftSquare = true;
+ break;
+ default:
+ exit(1);
+ }
+ }
+
+ unsigned N = pow(2, log2n);
+ Real Γ₀ = 1;
+ Real μ₀ = τ₀ > 0 ? (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀) : Γ₀;
+
+ Real shift = μ₀ * pow(10, logShift);
+ if (shiftSquare) shift *= μ₀;
+ LogarithmicFourierTransform fft(N, k, Δτ, pad, shift);
+
+ std::vector<Real> C(N);
+ std::vector<Real> R(N);
+ std::vector<Complex> Ĉ(N);
+ std::vector<Complex> Ȓ(N);
+
+ Real β = β₀;
+
+ std::cout << std::setprecision(16);
+
+ while (β = std::round(1e6 * (β + Δβ)) / 1e6, β <= βₘₐₓ) {
+ if (std::filesystem::exists(logFourierFile("C", p, s, λ, τ₀, β, log2n, Δτ, logShift))) {
+ logFourierLoad(C, R, Ĉ, Ȓ, p, s, λ, τ₀, β, log2n, Δτ, logShift);
+
+ Real e = energy(fft, C, R, p, s, λ, β);
+
+ Real μ = estimateZ(fft, C, Ĉ, R, Ȓ, p, s, λ, τ₀, β);
+
+ std::cout << p << " " << s << " " << λ << " " << τ₀ << " " << β << " " << μ << " " << Ĉ[0].real() << " " << e << " " << Ȓ[0].real() << std::endl;
+ }
+ }
+
+ return 0;
+}