diff options
Diffstat (limited to 'walk.cpp')
-rw-r--r-- | walk.cpp | 40 |
1 files changed, 20 insertions, 20 deletions
@@ -11,12 +11,19 @@ using Rng = randutils::random_generator<pcg32>; using Real = double; using Vector = Eigen::Matrix<Real, Eigen::Dynamic, 1>; -using Matrix = Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic>; -Vector normalize(const Vector& x) { +Vector normalizeVector(const Vector& x) { return x * sqrt(x.size() / x.squaredNorm()); } +Vector randomVector(unsigned N, Rng& r, Real σ = 1) { + Vector v(N); + for (Real& vᵢ : v) { + vᵢ = r.variate<Real, std::normal_distribution>(0, σ); + } + return v; +} + Real wignerCDF(Real λ) { return 0.5 + (λ * sqrt(4 - pow(λ, 2)) / 4 + atan(λ / sqrt(4 - pow(λ, 2)))) / M_PI; } @@ -63,7 +70,7 @@ public: Vector gradientDescent(const QuadraticModel& M, const Vector& x₀, Real E, Real ε = 1e-14) { Vector xₜ = x₀; Real Hₜ = M.H(x₀); - Real α = 1; + Real α = 1.0 / M.N; Real m; Vector ∇H; @@ -75,7 +82,7 @@ Vector gradientDescent(const QuadraticModel& M, const Vector& x₀, Real E, Real Real Hₜ₊₁; while ( - xₜ₊₁ = normalize(xₜ - α * ∇H), Hₜ₊₁ = M.H(xₜ₊₁), + xₜ₊₁ = normalizeVector(xₜ - α * ∇H), Hₜ₊₁ = M.H(xₜ₊₁), pow(Hₜ₊₁ / M.N - E, 2) > pow(Hₜ / M.N - E, 2) - α * m ) { α /= 2; @@ -90,14 +97,11 @@ Vector gradientDescent(const QuadraticModel& M, const Vector& x₀, Real E, Real } Vector randomStep(const QuadraticModel& M, const Vector& x₀, Real E, Rng& r, Real Δt = 1e-4) { - Vector η(M.N); - for (Real& ηᵢ : η) { - ηᵢ = r.variate<Real, std::normal_distribution>(0, sqrt(2 * Δt)); - } - η -= η.dot(x₀) * x₀ / x₀.squaredNorm(); + Vector η = randomVector(M.N, r, sqrt(2 * Δt)); + η -= (η.dot(x₀) / x₀.squaredNorm()) * x₀; Vector ∇H₀ = M.∇H(x₀); - η -= η.dot(∇H₀) * ∇H₀ / ∇H₀.squaredNorm(); - return gradientDescent(M, normalize(x₀ + η), E); + η -= (η.dot(∇H₀) / ∇H₀.squaredNorm()) * ∇H₀; + return gradientDescent(M, normalizeVector(x₀ + η), E); } int main(int argc, char* argv[]) { @@ -132,26 +136,22 @@ int main(int argc, char* argv[]) { } Rng r; - QuadraticModel ls(N, r); + QuadraticModel model(N, r); - Vector x₀ = Vector::Zero(N); - for (Real& xi : x₀) { - xi = r.variate<Real, std::normal_distribution>(0, 1); - } - x₀ = normalize(x₀); - x₀ = gradientDescent(ls, x₀, E); + Vector x₀ = normalizeVector(randomVector(N, r)); + x₀ = gradientDescent(model, x₀, E); std::cout << std::setprecision(15); for (Real t = 0; t < T₀; t += Δt) { - x₀ = randomStep(ls, x₀, E, r, Δt); + x₀ = randomStep(model, x₀, E, r, Δt); } Vector x = x₀; for (Real t = 0; t < T; t += Δt) { std::cout << t << " " << x.dot(x₀) / N << std::endl; - x = randomStep(ls, x, E, r, Δt); + x = randomStep(model, x, E, r, Δt); } return 0; |