1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
#include "fourier.hpp"
#include <fftw3.h>
inline Real fP(unsigned p, Real q) {
return 0.5 * pow(q, p);
}
inline Real dfP(unsigned p, Real q) {
return 0.5 * p * pow(q, p - 1);
}
inline Real ddfP(unsigned p, Real q) {
return 0.5 * p * (p - 1) * pow(q, p - 2);
}
Real f(Real λ, unsigned p, unsigned s, Real q) {
return (1 - λ) * fP(p, q) + λ * fP(s, q);
}
Real df(Real λ, unsigned p, unsigned s, Real q) {
return (1 - λ) * dfP(p, q) + λ * dfP(s, q);
}
Real ddf(Real λ, unsigned p, unsigned s, Real q) {
return (1 - λ) * ddfP(p, q) + λ * ddfP(s, q);
}
FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : n(n), Δω(Δω), Δτ(Δτ) {
a = fftw_alloc_real(2 * n);
â = reinterpret_cast<Complex*>(fftw_alloc_complex(n + 1));
// fftw_init_threads();
// fftw_plan_with_nthreads(FFTW_THREADS);
fftw_import_wisdom_from_filename("fftw.wisdom");
plan_r2c = fftw_plan_dft_r2c_1d(2 * n, a, reinterpret_cast<fftw_complex*>(â), flags);
plan_c2r = fftw_plan_dft_c2r_1d(2 * n, reinterpret_cast<fftw_complex*>(â), a, flags);
fftw_export_wisdom_to_filename("fftw.wisdom");
}
FourierTransform::~FourierTransform() {
fftw_destroy_plan(plan_r2c);
fftw_destroy_plan(plan_c2r);
fftw_free(a);
fftw_free(â);
fftw_cleanup();
}
std::vector<Complex> FourierTransform::fourier(const std::vector<Real>& c) {
for (unsigned i = 0; i < 2 * n; i++) {
a[i] = c[i];
}
fftw_execute(plan_r2c);
std::vector<Complex> ĉ(n + 1);
for (unsigned i = 0; i < n + 1; i++) {
ĉ[i] = â[i] * (Δτ * M_PI);
}
return ĉ;
}
std::vector<Complex> FourierTransform::fourier() {
fftw_execute(plan_r2c);
std::vector<Complex> ĉ(n+1);
for (unsigned i = 0; i < n+1; i++) {
ĉ[i] = â[i] * (Δτ * M_PI);
}
return ĉ;
}
std::vector<Real> FourierTransform::convolve(const std::vector<Real>& Γh, const std::vector<Real>& R) {
a[0] = 0;
for (unsigned i = 1; i < n; i++) {
a[i] = R[i];
a[2 * n - i] = -R[i];
}
fftw_execute(plan_r2c);
for (unsigned i = 1; i < n + 1; i++) {
â[i] *= Γh[i] * (Δτ * M_PI);
}
fftw_execute(plan_c2r);
std::vector<Real> dC(n);
for (unsigned i = 0; i < n; i++) {
dC[i] = a[i] * (Δω / (2 * M_PI));
}
return dC;
}
std::vector<Real> FourierTransform::inverse(const std::vector<Complex>& ĉ) {
for (unsigned i = 0; i < n + 1; i++) {
â[i] = ĉ[i];
}
fftw_execute(plan_c2r);
std::vector<Real> c(2*n);
for (unsigned i = 0; i < 2*n; i++) {
c[i] = a[i] * (Δω / (2 * M_PI));
}
return c;
}
void FourierTransform::writeToA(unsigned i, Real ai) {
a[i] = ai;
}
LogarithmicFourierTransform::LogarithmicFourierTransform(unsigned N, Real k, Real Δτ, unsigned pad) : N(N), pad(pad), k(k), Δτ(Δτ) {
τₛ = -0.5 * N;
ωₛ = -0.5 * N;
sₛ = -0.5 * pad * N;
a = reinterpret_cast<Complex*>(fftw_alloc_complex(pad*N));
â = reinterpret_cast<Complex*>(fftw_alloc_complex(pad*N));
fftw_import_wisdom_from_filename("fftw.wisdom");
a_to_â = fftw_plan_dft_1d(pad*N, reinterpret_cast<fftw_complex*>(a), reinterpret_cast<fftw_complex*>(â), FFTW_BACKWARD, 0);
â_to_a = fftw_plan_dft_1d(pad*N, reinterpret_cast<fftw_complex*>(â), reinterpret_cast<fftw_complex*>(a), FFTW_BACKWARD, 0);
fftw_export_wisdom_to_filename("fftw.wisdom");
}
LogarithmicFourierTransform::~LogarithmicFourierTransform() {
fftw_destroy_plan(a_to_â);
fftw_destroy_plan(â_to_a);
fftw_free(a);
fftw_free(â);
fftw_cleanup();
}
Real LogarithmicFourierTransform::τ(unsigned n) const {
return Δτ * (n + τₛ);
}
Real LogarithmicFourierTransform::ω(unsigned n) const {
return Δτ * (n + ωₛ);
}
Real LogarithmicFourierTransform::s(unsigned n) const {
return (n + sₛ) * 2*M_PI / (pad * N * Δτ);
}
Real LogarithmicFourierTransform::t(unsigned n) const {
return exp(τ(n));
}
Real LogarithmicFourierTransform::ν(unsigned n) const {
return exp(ω(n));
}
Complex gamma(Complex z) {
gsl_sf_result logΓ;
gsl_sf_result argΓ;
gsl_sf_lngamma_complex_e(z.real(), z.imag(), &logΓ, &argΓ);
return exp(logΓ.val + 1i * argΓ.val);
}
std::vector<Complex> LogarithmicFourierTransform::fourier(const std::vector<Real>& c, bool symmetric) {
std::vector<Complex> ĉ(N);
std::vector<Real> σs = {1};
if (symmetric){
σs.push_back(-1);
}
for (Real σ : σs) {
for (unsigned n = 0; n < pad*N; n++) {
if (n < N) {
a[n] = c[n] * exp((1 - k) * τ(n));
} else {
a[n] = 0;
}
}
fftw_execute(a_to_â);
for (unsigned n = 0; n < pad*N; n++) {
â[(pad*N / 2 + n) % (pad*N)] *= pow(1i * σ, 1i * s(n) - k) * gamma(k - 1i * s(n));
}
fftw_execute(â_to_a);
for (unsigned n = 0; n < N; n++) {
ĉ[n] += exp(-k * ω(n)) * a[(pad - 1)*N+n].real() / (Real)(pad*N);
}
}
return ĉ;
}
std::vector<Real> LogarithmicFourierTransform::inverse(const std::vector<Complex>& ĉ) {
std::vector<Real> c(N);
std::vector<Real> σs = {1, -1};
for (Real σ : σs) {
for (unsigned n = 0; n < pad * N; n++) {
if (n < N) {
a[n] = ĉ[n] * exp((1 - k) * ω(n));
} else {
a[n] = 0;
}
}
fftw_execute(a_to_â);
for (unsigned n = 0; n < pad*N; n++) {
â[(pad*N / 2 + n) % (pad*N)] *= pow(-1i * σ, 1i * s(n) - k) * gamma(k - 1i * s(n));
}
fftw_execute(â_to_a);
for (unsigned n = 0; n < N; n++) {
c[n] += exp(-k * τ(n)) * a[(pad - 1)*N+n].real() / (Real)(pad*N) / (2 * M_PI);
}
}
return c;
}
std::string fourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real y, unsigned log2n, Real τₘₐₓ) {
return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(y) + "_" + std::to_string(log2n) + "_" + std::to_string(τₘₐₓ) + ".dat";
}
Real energy(const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ, Real y, Real Δτ) {
Real e = 0;
for (unsigned i = 0; i < C.size() / 2; i++) {
e += y * R[i] * df(λ, p, s, C[i]) * M_PI * Δτ;
}
return e;
}
std::tuple<std::vector<Complex>, std::vector<Complex>> RddfCtdfCt(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ) {
for (unsigned i = 0; i < C.size() / 2; i++) {
fft.writeToA(i, R[i] * ddf(λ, p, s, C[i]));
}
for (unsigned i = C.size() / 2; i < C.size(); i++) {
fft.writeToA(i, 0);
}
std::vector<Complex> RddfCt = fft.fourier();
for (unsigned i = 0; i < C.size(); i++) {
fft.writeToA(i, df(λ, p, s, C[i]));
}
std::vector<Complex> dfCt = fft.fourier();
return {RddfCt, dfCt};
}
Real estimateZ(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ct, const std::vector<Real>& R, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real y) {
auto [RddfCt, dfCt] = RddfCtdfCt(fft, C, R, p, s, λ);
Real Γ₀ = 1 + τ₀ / 2;
return ((Γ₀ * std::conj(Rt[0]) + pow(y, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real();
}
|