1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
#include "fourier.hpp"
#include "p-spin.hpp"
#include <fftw3.h>
FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : n(n), Δω(Δω), Δτ(Δτ) {
a = fftw_alloc_real(2 * n);
â = reinterpret_cast<Complex*>(fftw_alloc_complex(n + 1));
// fftw_init_threads();
// fftw_plan_with_nthreads(FFTW_THREADS);
fftw_import_wisdom_from_filename("fftw.wisdom");
plan_r2c = fftw_plan_dft_r2c_1d(2 * n, a, reinterpret_cast<fftw_complex*>(â), flags);
plan_c2r = fftw_plan_dft_c2r_1d(2 * n, reinterpret_cast<fftw_complex*>(â), a, flags);
fftw_export_wisdom_to_filename("fftw.wisdom");
}
FourierTransform::~FourierTransform() {
fftw_destroy_plan(plan_r2c);
fftw_destroy_plan(plan_c2r);
fftw_free(a);
fftw_free(â);
fftw_cleanup();
}
std::vector<Complex> FourierTransform::fourier(const std::vector<Real>& c) {
for (unsigned i = 0; i < 2 * n; i++) {
a[i] = c[i];
}
fftw_execute(plan_r2c);
std::vector<Complex> ĉ(n + 1);
for (unsigned i = 0; i < n + 1; i++) {
ĉ[i] = â[i] * (Δτ * M_PI);
}
return ĉ;
}
std::vector<Complex> FourierTransform::fourier() {
fftw_execute(plan_r2c);
std::vector<Complex> ĉ(n+1);
for (unsigned i = 0; i < n+1; i++) {
ĉ[i] = â[i] * (Δτ * M_PI);
}
return ĉ;
}
std::vector<Real> FourierTransform::convolve(const std::vector<Real>& Γh, const std::vector<Real>& R) {
a[0] = 0;
for (unsigned i = 1; i < n; i++) {
a[i] = R[i];
a[2 * n - i] = -R[i];
}
fftw_execute(plan_r2c);
for (unsigned i = 1; i < n + 1; i++) {
â[i] *= Γh[i] * (Δτ * M_PI);
}
fftw_execute(plan_c2r);
std::vector<Real> dC(n);
for (unsigned i = 0; i < n; i++) {
dC[i] = a[i] * (Δω / (2 * M_PI));
}
return dC;
}
std::vector<Real> FourierTransform::inverse(const std::vector<Complex>& ĉ) {
for (unsigned i = 0; i < n + 1; i++) {
â[i] = ĉ[i];
}
fftw_execute(plan_c2r);
std::vector<Real> c(2*n);
for (unsigned i = 0; i < 2*n; i++) {
c[i] = a[i] * (Δω / (2 * M_PI));
}
return c;
}
void FourierTransform::writeToA(unsigned i, Real ai) {
a[i] = ai;
}
std::string fourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real y, unsigned log2n, Real τₘₐₓ) {
return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(y) + "_" + std::to_string(log2n) + "_" + std::to_string(τₘₐₓ) + ".dat";
}
Real energy(const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ, Real y, Real Δτ) {
Real e = 0;
for (unsigned n = 0; n < C.size() / 4 -1; n++) {
Real h₂ₙ = M_PI * Δτ;
Real h₂ₙ₊₁ = M_PI * Δτ;
Real f₂ₙ = R[2*n] * df(λ, p, s, C[2*n]);
Real f₂ₙ₊₁ = R[2*n+1] * df(λ, p, s, C[2*n+1]);
Real f₂ₙ₊₂ = R[2*n+2] * df(λ, p, s, C[2*n+2]);
e += (h₂ₙ + h₂ₙ₊₁) / 6 * (
(2 - h₂ₙ₊₁ / h₂ₙ) * f₂ₙ
+ pow(h₂ₙ + h₂ₙ₊₁, 2) / (h₂ₙ * h₂ₙ₊₁) * f₂ₙ₊₁
+ (2 - h₂ₙ / h₂ₙ₊₁) * f₂ₙ₊₂
);
}
return y * e;
}
std::tuple<std::vector<Complex>, std::vector<Complex>> RddfCtdfCt(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ) {
for (unsigned i = 0; i < C.size() / 2; i++) {
fft.writeToA(i, R[i] * ddf(λ, p, s, C[i]));
}
for (unsigned i = C.size() / 2; i < C.size(); i++) {
fft.writeToA(i, 0);
}
std::vector<Complex> RddfCt = fft.fourier();
for (unsigned i = 0; i < C.size(); i++) {
fft.writeToA(i, df(λ, p, s, C[i]));
}
std::vector<Complex> dfCt = fft.fourier();
return {RddfCt, dfCt};
}
Real estimateZ(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ct, const std::vector<Real>& R, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real y) {
auto [RddfCt, dfCt] = RddfCtdfCt(fft, C, R, p, s, λ);
Real Γ₀ = 1 + τ₀ / 2;
return ((Γ₀ * std::conj(Rt[0]) + pow(y, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real();
}
|