1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
#include "fourier.hpp"
inline Real fP(unsigned p, Real q) {
return 0.5 * pow(q, p);
}
inline Real dfP(unsigned p, Real q) {
return 0.5 * p * pow(q, p - 1);
}
inline Real ddfP(unsigned p, Real q) {
return 0.5 * p * (p - 1) * pow(q, p - 2);
}
Real f(Real λ, unsigned p, unsigned s, Real q) {
return (1 - λ) * fP(p, q) + λ * fP(s, q);
}
Real df(Real λ, unsigned p, unsigned s, Real q) {
return (1 - λ) * dfP(p, q) + λ * dfP(s, q);
}
Real ddf(Real λ, unsigned p, unsigned s, Real q) {
return (1 - λ) * ddfP(p, q) + λ * ddfP(s, q);
}
FourierTransform::FourierTransform(unsigned n, Real Δω, Real Δτ, unsigned flags) : n(n), Δω(Δω), Δτ(Δτ) {
a = fftw_alloc_real(2 * n);
â = reinterpret_cast<Complex*>(fftw_alloc_complex(n + 1));
fftw_init_threads();
fftw_plan_with_nthreads(FFTW_THREADS);
fftw_import_wisdom_from_filename("fftw.wisdom");
plan_r2c = fftw_plan_dft_r2c_1d(2 * n, a, reinterpret_cast<fftw_complex*>(â), flags);
plan_c2r = fftw_plan_dft_c2r_1d(2 * n, reinterpret_cast<fftw_complex*>(â), a, flags);
fftw_export_wisdom_to_filename("fftw.wisdom");
}
FourierTransform::~FourierTransform() {
fftw_destroy_plan(plan_r2c);
fftw_destroy_plan(plan_c2r);
fftw_free(a);
fftw_free(â);
fftw_cleanup();
}
std::vector<Complex> FourierTransform::fourier(const std::vector<Real>& c) {
for (unsigned i = 0; i < 2 * n; i++) {
a[i] = c[i];
}
fftw_execute(plan_r2c);
std::vector<Complex> ĉ(n + 1);
for (unsigned i = 0; i < n + 1; i++) {
ĉ[i] = â[i] * (Δτ * M_PI);
}
return ĉ;
}
std::vector<Complex> FourierTransform::fourier() {
fftw_execute(plan_r2c);
std::vector<Complex> ĉ(n+1);
for (unsigned i = 0; i < n+1; i++) {
ĉ[i] = â[i] * (Δτ * M_PI);
}
return ĉ;
}
std::vector<Real> FourierTransform::convolve(const std::vector<Real>& Γh, const std::vector<Real>& R) {
a[0] = 0;
for (unsigned i = 1; i < n; i++) {
a[i] = R[i];
a[2 * n - i] = -R[i];
}
fftw_execute(plan_r2c);
for (unsigned i = 1; i < n + 1; i++) {
â[i] *= Γh[i] * (Δτ * M_PI);
}
fftw_execute(plan_c2r);
std::vector<Real> dC(n);
for (unsigned i = 0; i < n; i++) {
dC[i] = a[i] * (Δω / (2 * M_PI));
}
return dC;
}
std::vector<Real> FourierTransform::inverse(const std::vector<Complex>& ĉ) {
for (unsigned i = 0; i < n + 1; i++) {
â[i] = ĉ[i];
}
fftw_execute(plan_c2r);
std::vector<Real> c(2*n);
for (unsigned i = 0; i < 2*n; i++) {
c[i] = a[i] * (Δω / (2 * M_PI));
}
return c;
}
void FourierTransform::writeToA(unsigned i, Real ai) {
a[i] = ai;
}
std::string fourierFile(std::string prefix, unsigned p, unsigned s, Real λ, Real τ₀, Real y, unsigned log2n, Real τₘₐₓ) {
return prefix + "_" + std::to_string(p) + "_" + std::to_string(s) + "_" + std::to_string(λ) + "_" + std::to_string(τ₀) + "_" + std::to_string(y) + "_" + std::to_string(log2n) + "_" + std::to_string(τₘₐₓ) + ".dat";
}
Real energy(const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ, Real y, Real Δτ) {
Real e = 0;
for (unsigned i = 0; i < C.size() / 2; i++) {
e += y * R[i] * df(λ, p, s, C[i]) * M_PI * Δτ;
}
return e;
}
std::tuple<std::vector<Complex>, std::vector<Complex>> RddfCtdfCt(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Real>& R, unsigned p, unsigned s, Real λ) {
for (unsigned i = 0; i < C.size() / 2; i++) {
fft.writeToA(i, R[i] * ddf(λ, p, s, C[i]));
}
for (unsigned i = C.size() / 2; i < C.size(); i++) {
fft.writeToA(i, 0);
}
std::vector<Complex> RddfCt = fft.fourier();
for (unsigned i = 0; i < C.size(); i++) {
fft.writeToA(i, df(λ, p, s, C[i]));
}
std::vector<Complex> dfCt = fft.fourier();
return {RddfCt, dfCt};
}
Real estimateZ(FourierTransform& fft, const std::vector<Real>& C, const std::vector<Complex>& Ct, const std::vector<Real>& R, const std::vector<Complex>& Rt, unsigned p, unsigned s, Real λ, Real τ₀, Real y) {
auto [RddfCt, dfCt] = RddfCtdfCt(fft, C, R, p, s, λ);
Real Γ₀ = 1 + τ₀ / 2;
return ((Γ₀ * std::conj(Rt[0]) + pow(y, 2) * (RddfCt[0] * Ct[0] + dfCt[0] * std::conj(Rt[0]))) / Ct[0]).real();
}
|