1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
#include "fourier.hpp"
#include <fstream>
#include <fftw3.h>
#include <getopt.h>
#include <iostream>
Real energy(const std::vector<Real>& C, std::vector<Real>& R, Real λ, unsigned p, unsigned s, Real Δτ) {
Real I = 0;
for (unsigned σ = 0; σ < C.size(); σ++) {
I += Δτ * df(λ, p, s, C[σ]) * R[σ];
}
return I;
}
int main(int argc, char* argv[]) {
unsigned p = 3;
unsigned s = 4;
Real λ = 0.5;
Real τₘₐₓ = 1e3;
Real τ₀ = 0;
Real β₀ = 0;
Real βₘₐₓ = 1;
Real Δβ = 1e-2;
unsigned iterations = 10;
unsigned log2n = 8;
Real ε = 1e-14;
int opt;
while ((opt = getopt(argc, argv, "T:2:t:0:b:d:I:")) != -1) {
switch (opt) {
case 'T':
τₘₐₓ = atof(optarg);
break;
case '2':
log2n = atof(optarg);
break;
case 't':
τ₀ = atof(optarg);
break;
case '0':
β₀ = atof(optarg);
break;
case 'b':
βₘₐₓ = atof(optarg);
break;
case 'd':
Δβ = atof(optarg);
break;
case 'I':
iterations = (unsigned)atof(optarg);
break;
default:
exit(1);
}
}
unsigned N = pow(2, log2n);
Real Δτ = (1 + τ₀ / 2) * τₘₐₓ / M_PI / N;
Real Δω = M_PI / ((1 + τ₀ / 2) * τₘₐₓ);
FourierTransform fft(N, Δω, Δτ, FFTW_ESTIMATE);
Real Γ₀ = 1;
Real μ = 1;
if (τ₀ > 0) {
μ = (sqrt(1+4*Γ₀*τ₀) - 1) / (2 * τ₀);
}
Real τ = 0;
std::vector<Real> C(N);
std::vector<Real> R(N);
std::vector<Real> Γ(N);
std::vector<Real> Γh(N+1);
Γh[0] = Γ₀;
for (unsigned i = 0; i < N; i++) {
Real τ = i * Δτ;
Real ω = (i + 1) * Δω * M_PI;
if (τ₀ > 0) {
C[i] = (Γ₀ / μ) * (exp(-μ * τ) - μ * τ₀ * exp(-τ / τ₀)) / (1 - pow(μ * τ₀, 2));
Γ[i] = (Γ₀ / τ₀) * exp(-τ / τ₀);
} else {
C[i] = (Γ₀ / μ) * exp(-μ * τ);
}
Γh[i+1] = Γ₀ / (1 + pow(ω * τ₀, 2));
R[i] = exp(-μ * τ);
}
for (Real β = β₀; β < βₘₐₓ; β += Δβ) {
Real Rerr = 100;
while (sqrt(Rerr / N) > ε) {
/* First step: integrate R from C */
std::vector<Real> R₊(N);
R₊[0] = 1;
for (unsigned i = 1; i < N; i++) {
Real I = 0;
for (unsigned j = 0; j <= i; j++) {
I += R[i - j] * ddf(λ, p, s, C[i - j]) * R[j] * Δτ;
}
Real dR = -μ * R₊[i - 1] + pow(β, 2) * I;
R₊[i] = R₊[i - 1] + dR * Δτ;
}
Rerr = 0;
for (unsigned i = 0; i < N; i++) {
Rerr += pow(R[i] - R₊[i], 2);
}
R = R₊;
/* Second step: integrate C from R */
std::vector<Real> dC = fft.convolve(Γh, R);
Real Cₜ₊₁ = 0;
for (unsigned i = 0; i < N; i++) {
Real Cₜ = Cₜ₊₁ + dC[N - i - 1] * Δτ;
C[N - i - 1] = Cₜ;
Cₜ₊₁ = Cₜ;
}
/* Third step: adjust μ */
μ *= C[0];
std::cerr << β << " " << sqrt(Rerr / N) << std::endl;
}
std::ofstream outfile(fourierFile("Ci", p, s, λ, τ₀, β, log2n, τₘₐₓ), std::ios::out | std::ios::binary);
outfile.write((const char*)(C.data()), N * sizeof(Real));
outfile.close();
std::ofstream outfileR(fourierFile("Ri", p, s, λ, τ₀, β, log2n, τₘₐₓ), std::ios::out | std::ios::binary);
outfileR.write((const char*)(R.data()), N * sizeof(Real));
outfileR.close();
}
return 0;
}
|