1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
#include "log-fourier.hpp"
#include <getopt.h>
#include <iostream>
int main(int argc, char* argv[]) {
/* Model parameters */
unsigned p = 2;
unsigned s = 2;
Real λ = 0.5;
Real τ₀ = 0;
/* Log-Fourier parameters */
unsigned log2n = 8;
Real Δτ = 0.1;
Real k = 0.1;
/* Iteration parameters */
Real β₀ = 0;
Real βₘₐₓ = 0.7;
Real Δβ = 0.01;
int opt;
while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:k:D:0:")) != -1) {
switch (opt) {
case 'p':
p = atoi(optarg);
break;
case 's':
s = atoi(optarg);
break;
case '2':
log2n = atoi(optarg);
break;
case 't':
τ₀ = atof(optarg);
break;
case 'b':
βₘₐₓ = atof(optarg);
break;
case 'd':
Δβ = atof(optarg);
break;
case 'k':
k = atof(optarg);
break;
case 'D':
Δτ = atof(optarg);
break;
case '0':
β₀ = atof(optarg);
break;
default:
exit(1);
}
}
unsigned N = pow(2, log2n);
LogarithmicFourierTransform fft(N, k, Δτ, 4);
std::vector<Real> C(N);
std::vector<Real> R(N);
std::vector<Complex> Ct(N);
std::vector<Complex> Rt(N);
Real β = β₀;
while (β += Δβ, β <= βₘₐₓ) {
if (logFourierLoad(C, R, Ct, Rt, p, s, λ, τ₀, β, log2n, Δτ, k)) {
Real e = energy(fft, C, R, p, s, λ, β);
Real μ = estimateZ(fft, C, Ct, R, Rt, p, s, λ, τ₀, β);
std::cout << p << " " << s << " " << λ << " " << τ₀ << " " << β << " " << μ << " " << Ct[0].real() << " " << e << std::endl;
}
}
return 0;
}
|