summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2023-05-28 12:21:20 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2023-05-28 12:21:20 +0200
commit9e542247c14cfa5a9df6844b6c8272bfa626b9a7 (patch)
treeffa9efb2eecdeaa1091593ea24961cf3dbbb6fb3
parentf66f0b27de5f24022c72e2e07a91e136456f148b (diff)
downloadSciPostPhys_16_001-9e542247c14cfa5a9df6844b6c8272bfa626b9a7.tar.gz
SciPostPhys_16_001-9e542247c14cfa5a9df6844b6c8272bfa626b9a7.tar.bz2
SciPostPhys_16_001-9e542247c14cfa5a9df6844b6c8272bfa626b9a7.zip
Fixed formatting of 1RSB.
-rw-r--r--2-point.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/2-point.tex b/2-point.tex
index 6d3c437..1cc3687 100644
--- a/2-point.tex
+++ b/2-point.tex
@@ -194,7 +194,7 @@ $\chi(q)=f''(q)^{-1/2}$ is convex. The complexity at the ground state must
reflect the structure of equilibrium, and therefore be replica symmetric. We
are not aware of any result guaranteeing this for the complexity away from the
ground state, but we check that our replica-symmetric solutions satisfy the
-saddle point equations at 1RSB.
+saddle point equations at {\oldstylenums1}\textsc{rsb}.
To enforce the spherical constraint at stationary points, we make use of a Lagrange multiplier $\omega$. This results in the extremal problem
\begin{equation}