1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
|
\documentclass[fleqn,a4paper]{article}
\usepackage[utf8]{inputenc} % why not type "Bézout" with unicode?
\usepackage[T1]{fontenc} % vector fonts plz
\usepackage{fullpage,amsmath,amssymb,latexsym,graphicx}
\usepackage{newtxtext,newtxmath} % Times for PR
\usepackage{appendix}
\usepackage[dvipsnames]{xcolor}
\usepackage[
colorlinks=true,
urlcolor=MidnightBlue,
citecolor=MidnightBlue,
filecolor=MidnightBlue,
linkcolor=MidnightBlue
]{hyperref} % ref and cite links with pretty colors
\usepackage[
style=phys,
eprint=true,
maxnames = 100
]{biblatex}
\usepackage{anyfontsize,authblk}
\usepackage{tikz}
\usetikzlibrary{calc,fadings,decorations.pathreplacing,calligraphy}
\newcommand\pgfmathsinandcos[3]{%
\pgfmathsetmacro#1{sin(#3)}%
\pgfmathsetmacro#2{cos(#3)}%
}
\newcommand\LongitudePlane[3][current plane]{%
\pgfmathsinandcos\sinEl\cosEl{#2} % elevation
\pgfmathsinandcos\sint\cost{#3} % azimuth
\tikzset{#1/.style={cm={\cost,\sint*\sinEl,0,\cosEl,(0,0)}}}
}
\newcommand\LatitudePlane[3][current plane]{%
\pgfmathsinandcos\sinEl\cosEl{#2} % elevation
\pgfmathsinandcos\sint\cost{#3} % latitude
\pgfmathsetmacro\yshift{\cosEl*\sint}
\tikzset{#1/.style={cm={\cost,0,0,\cost*\sinEl,(0,\yshift)}}} %
}
\newcommand\NewLatitudePlane[4][current plane]{%
\pgfmathsinandcos\sinEl\cosEl{#3} % elevation
\pgfmathsinandcos\sint\cost{#4} % latitude
\pgfmathsetmacro\yshift{#2*\cosEl*\sint}
\tikzset{#1/.style={cm={\cost,0,0,\cost*\sinEl,(0,\yshift)}}} %
}
\newcommand\TangentPlane[5][current plane]{%
\pgfmathsinandcos\sint\cost{#3} % elevation
\pgfmathsinandcos\sinb\cosb{-#4} % latitude
\pgfmathsinandcos\sina\cosa{#5+90} % azimuth
\pgfmathsetmacro\xshift{\cosb*\sina}
\pgfmathsetmacro\yshift{-\cost*\sinb-\cosa*\cosb*\sint}
\tikzset{#1/.style={cm={-\sina*\sinb,\cosa*\sinb*\sint-\cost*\cosb,\cosa,\sina*\sint,(#2*\xshift,#2*\yshift)}}} %
}
\newcommand\DrawLongitudeCircle[2][1]{
\LongitudePlane{\angEl}{#2}
\tikzset{current plane/.prefix style={scale=#1}}
% angle of "visibility"
\pgfmathsetmacro\angVis{atan(sin(#2)*cos(\angEl)/sin(\angEl))} %
\draw[current plane] (\angVis:1) arc (\angVis:\angVis+180:1);
\draw[current plane,dashed] (\angVis-180:1) arc (\angVis-180:\angVis:1);
}
\newcommand\DrawLatitudeCircle[2][1]{
\LatitudePlane{\angEl}{#2}
\tikzset{current plane/.prefix style={scale=#1}}
\pgfmathsetmacro\sinVis{sin(#2)/cos(#2)*sin(\angEl)/cos(\angEl)}
% angle of "visibility"
\pgfmathsetmacro\angVis{asin(min(1,max(\sinVis,-1)))}
\draw[current plane] (\angVis:1) arc (\angVis:-\angVis-180:1);
\draw[current plane,dashed] (180-\angVis:1) arc (180-\angVis:\angVis:1);
}
\tikzset{%
>=latex, % option for nice arrows
inner sep=0pt,%
outer sep=2pt%
}
\addbibresource{2-point.bib}
\begin{document}
\title{
Arrangement of nearby minima and saddles in the mixed spherical energy landscapes
}
\author{Jaron Kent-Dobias}
\affil{\textsc{DynSysMath}, Istituto Nazionale di Fisica Nucleare, Sezione di Roma}
\maketitle
\begin{abstract}
The mixed spherical models were recently found to violate long-held
assumptions about mean-field glassy dynamics. In particular, the threshold
energy, where most stationary points are marginal and which in the simpler
pure models attracts long-time dynamics, seems to lose significance. Here,
we compute the typical distribution of stationary points relative to each
other in mixed models with a replica symmetric complexity. We examine the
stability of nearby points, accounting for the presence of an isolated
eigenvalue in their spectrum due to their proximity. Despite finding rich
structure not present in the pure models, we find nothing that distinguishes
the points that do attract the dynamics. Instead, we find new geometric
significance of the old threshold energy.
\end{abstract}
\tableofcontents
\section{Introduction}
Many systems exhibit ``glassiness,'' characterized by rapid slowing of dynamics
over a short parameter interval. These include actual (structural) glasses,
spin glasses, certain inference and optimization problems, and more
\cite{lots}. Glassiness is qualitatively understood to arise from structure of
an energy or cost landscape, whether due to the proliferation of metastable
states, to the raising of barriers which cause effective dynamic constraints.
However, in most models there is no quantitative correspondence between these
properties and the behavior.
In perhaps the simplest mean-field model of glasses, such a correspondence
exists and is well understood. In the pure spherical models, the dynamic
transition corresponds precisely with the energy level at which all marginal
minima are concentrated. At that level, called the \emph{threshold energy}
$E_\mathrm{th}$, slices of the landscape at fixed energy undergo a percolation
transition. In fact, this threshold energy is significant in other ways: it
attracts the long-time dynamics after quenches in temperature to below the
dynamical transition from any starting temperature. All of this can be understood in terms of the landscape structure.
\cite{Biroli_1999_Dynamical}
In slightly less simple models, the mixed spherical models, the story changes.
There are now a range of energies with exponentially many marginal minima. It
was believed that the energy level at which these marginal minima are the most
common type of stationary point would play the same role as the threshold
energy in the pure models. However, recent work has shown that this is
incorrect. Quenches from different starting temperatures above the dynamical
transition temperature result in dynamics that approach different energy
levels, and the purported threshold does not attract the long-time dynamics in
most cases \cite{Folena_2020_Rethinking, Folena_2021_Gradient}.
This paper studies the two-point structure of stationary points in the mixed
spherical models, or their arrangement relative to each other, previously
studied only for the pure models \cite{Ros_2019_Complexity}. This gives various
kinds of information. When one point is a minimum, we see what other kinds of
minima are nearby, and what kind of saddle points (barriers) separate them.
When both points are saddles, we see the arrangement of barriers relative to
each other, perhaps learning something about the geometry of the basins of
attraction that they surround.
In order to address the open problem of what attracts the long-time dynamics,
we focus on the neighborhoods of the marginal minima, to see if there is
anything interesting to differentiate sets of them from each other. Though we
find rich structure in this population, their properties pivot around the
debunked threshold energy, and the apparent attractors of long-time dynamics
are not distinguished by this measure. Therefore, with respect to the problem
of dynamics this paper merely deepens the outstanding problems.
In \S\ref{sec:model}, we introduce the mixed spherical models and discuss their
properties. In \S\ref{sec:results}, we share the main results of the paper. In
\S\ref{sec:complexity} we detail the calculation of the two-point complexity,
and in \S\ref{sec:eigenvalue} and \S\ref{sec:franz-parisi} we do the same for
the properties of the isolated eigenvalue and for the zero-temperature
Franz--Parisi potential.
\section{Model}
\label{sec:model}
\cite{Crisanti_1992_The, Crisanti_1993_The}
The mixed spherical models are defined by the Hamiltonian
\begin{equation} \label{eq:hamiltonian}
H(\mathbf s)=-\sum_p\frac1{p!}\sum_{i_1\cdots i_p}^NJ^{(p)}_{i_1\cdots i_p}s_{i_1}\cdots s_{i_p}
\end{equation}
where the vectors $\mathbf s\in\mathbb R^N$ are confined to the sphere
$\|\mathbf s\|^2=N$. The coupling coefficients $J$ are fully-connected and random, with
zero mean and variance $\overline{(J^{(p)})^2}=a_pp!/2N^{p-1}$ scaled so that
the energy is typically extensive. The overbar denotes an average
over the coefficients $J$. The factors $a_p$ in the variances are freely chosen
constants that define the particular model. For instance, the `pure'
$p$-spin model has $a_{p'}=\delta_{p'p}$. This class of models encompasses all
statistically isotropic Gaussian random Hamiltonians defined on the
hypersphere.
The covariance between the energy at two different points is a function of the overlap, or dot product, between those points, or
\begin{equation} \label{eq:covariance}
\overline{H(\mathbf s_1)H(\mathbf s_2)}=Nf\left(\frac{\mathbf s_1\cdot\mathbf s_2}N\right)
\end{equation}
where the function $f$ is defined from the coefficients $a_p$ by
\begin{equation}
f(q)=\frac12\sum_pa_pq^p
\end{equation}
In this paper, we will focus on models with a replica symmetric complexity, but
many of the intermediate formulae are valid for arbitrary replica symmetry
breakings. At most {\oldstylenums1}\textsc{rsb} in the equilibrium is guaranteed if the function
$\chi(q)=f''(q)^{-1/2}$ is convex. The complexity at the ground state must
reflect the structure of equilibrium, and therefore be replica symmetric. We
are not aware of any result guaranteeing this for the complexity away from the
ground state, but we check that our replica-symmetric solutions satisfy the
saddle point equations at {\oldstylenums1}\textsc{rsb}.
To enforce the spherical constraint at stationary points, we make use of a Lagrange multiplier $\omega$. This results in the extremal problem
\begin{equation}
H(\mathbf s)+\frac\omega2(\|\mathbf s\|^2-N)
\end{equation}
The gradient and Hessian at a stationary point are then
\begin{align}
\nabla H(\mathbf s,\omega)=\partial H(\mathbf s)+\omega\mathbf s
&&
\operatorname{Hess}H(\mathbf s,\omega)=\partial\partial H(\mathbf s)+\omega I
\end{align}
where $\partial=\frac\partial{\partial\mathbf s}$ will always denote the derivative with respect to $\mathbf s$.
When we count stationary points, we classify them by certain properties. One of
these is the energy density $E=H/N$. We will also fix the \emph{stability}
$\mu=\frac1N\operatorname{Tr}\operatorname{Hess}H$, also known as the radial
reaction. In the mixed spherical models, all stationary points have a
semicircle law for the eigenvalue spectrum of their Hessians, each with the
same width $\mu_\mathrm m$, but whose center is shifted by different amounts. Fixing the
stability $\mu$ fixes this shift, and therefore fixes the spectrum of the
associated stationary point. When the stability is smaller than the width of
the spectrum, or $\mu<\mu_\mathrm m$, there are an extensive number of negative
eigenvalues, and the stationary point is a saddle with same large index whose
value is set by the stability. When the stability is greater than the width of
the spectrum, or $\mu>\mu_\mathrm m$, the semicircle distribution lies only
over positive eigenvalues, and unless an isolated eigenvalue leaves the
semicircle and becomes negative, the stationary point is a minimum. Finally,
when $\mu=\mu_\mathrm m$, the edge of the semicircle touches zero and we have
marginal minima.
In the pure spherical models, $E$ and $\mu$ cannot be fixed separately: fixing
one uniquely fixes the other. This property leads to the great simplification
of these models: marginal minima exist \emph{only} at one energy level, and
therefore only that energy has the possibility of trapping the long-time
dynamics.
\subsection{Models of focus}
In this study, we focus exclusively on models whose complexity is replica symmetric. We study two models of interest, both with concave $f''(q)^{-1/2}$: a $3+4$ model whose dynamics were studied extensively in \cite{Folena_2020_Rethinking}, given by
\begin{equation}
f_{3+4}(q)=\frac12\big(q^3+q^4\big)
\end{equation}
and a $3+8$ model tuned to maximize the ``interesting'' region of the dynamics recently studied in \cite{Folena_2023_On} given by
\begin{equation}
f_{3+8}(q)=\frac12\big(\tfrac{76}{100}q^3+\tfrac{24}{100}q^8\big)
\end{equation}
\begin{figure}
\caption{
Plots of the complexity (logarithm of the number of stationary points) for
the mixed spherical models studied in this paper. Energies and stabilities
of interest are marked, including the ground state energy and stability
$E_\mathrm{gs}$ and $\mu_\mathrm{gs}$, the marginal stability $\mu_\mathrm
m$, and the threshold energy $E_\mathrm{th}$. The line shows the location
of the most common type of stationary point at each energy level. Estimated
locations of notable attractors of the dynamics are highlighted.
} \label{fig:complexities}
\end{figure}
\section{Results}
\label{sec:results}
\begin{figure}
\includegraphics{figs/gapped_min_energy.pdf}
\raisebox{5em}{\includegraphics{figs/gapped_min_energy_legend.pdf}}
\hfill
\includegraphics{figs/gapped_min_stability.pdf}
\raisebox{5em}{\includegraphics{figs/gapped_min_stability_legend.pdf}}
\caption{
The neighborhood of a reference minimum with $E_0=-1.71865<E_\mathrm{th}$
and $\mu_0=6.1>\mu_\mathrm m$. \textbf{Left:} The most common type of
stationary point lying at fixed overlap $q$ and energy $E_1$ from the
reference minimum. The black line gives the smallest or largest energies
where neighbors can be found at a given overlap. \textbf{Right:} The most
common type of stationary point lying at fixed overlap $q$ and stability
$\mu_1$ from the reference minimum. Note that this describes a different
set of stationary points than shown in the left plot. On both plots, the
shading of the righthand part depicts the state of an isolated eigenvalue
in the spectrum of the Hessian of the neighboring points. Those more
lightly shaded are minima with an isolated eigenvalue that does not change
their stability, i.e., $\lambda_\mathrm{min}>0$. Those more darkly shaded
are saddles with an isolated eigenvalue, either with many unstable
directions ($\mu_1<\mu_\mathrm m$) or with only one, corresponding to minima
destabilized by the isolated eigenvalue ($\mu_1>\mu_\mathrm m$). The
dot-dashed lines on both plots depict the trajectory of the solid line on
the other plot. In this case, the points lying nearest to the reference
minimum are saddles with $\mu<\mu_\mathrm m$, but with energies smaller than
the threshold energy.
} \label{fig:min.neighborhood}
\end{figure}
\begin{figure}
\centering
\includegraphics{figs/franz_parisi.pdf}
\caption{
Comparison of the lowest-energy stationary points at overlap $q$ with a
reference minimum of $E_0=-1.71865<E_\mathrm{th}$ and
$\mu_0=6.1>\mu_\mathrm m$ (yellow, top), and the zero-temperature Franz--Parisi potential
with respect to the same reference minimum (blue, bottom). The two curves
coincide precisely at their minimum $q=0$ and at the local maximum $q\simeq0.5909$.
} \label{fig:franz-parisi}
\end{figure}
\section{Complexity}
\label{sec:complexity}
We introduce the Kac--Rice \cite{Kac_1943_On, Rice_1944_Mathematical} measure
\begin{equation}
d\nu_H(\mathbf s,\omega)
=2\,d\mathbf s\,d\omega\,\delta(\|\mathbf s\|^2-N)\,
\delta\big(\nabla H(\mathbf s,\omega)\big)\,
\big|\det\operatorname{Hess}H(\mathbf s,\omega)\big|
\end{equation}
which counts stationary points of the function $H$. More interesting is the
measure conditioned on the energy density $E$ and stability $\mu$ of the points,
\begin{equation}
d\nu_H(\mathbf s,\omega\mid E,\mu)
=d\nu_H(\mathbf s,\omega)\,
\delta\big(NE-H(\mathbf s)\big)\,
\delta\big(N\mu-\operatorname{Tr}\operatorname{Hess}H(\mathbf s,\omega)\big)
\end{equation}
While $\mu$ is strictly the trace of the Hessian, we call it the stability
because in this family of models all stationary points have a bulk spectrum of
the same shape, shifted by different constants. The stability $\mu$ sets this
shift, and therefore determines if the spectrum has bulk support on zero.
We want the typical number of stationary points with energy density
$E_1$ and stability $\mu_1$ that lie a fixed overlap $q$ from a reference
stationary point of energy density $E_0$ and stability $\mu_0$.
\begin{equation} \label{eq:complexity.definition}
\Sigma_{12}
=\frac1N\overline{\int\frac{d\nu_H(\pmb\sigma,\varsigma\mid E_0,\mu_0)}{\int d\nu_H(\pmb\sigma',\varsigma'\mid E_0,\mu_0)}\,
\log\bigg(\int d\nu_H(\mathbf s,\omega\mid E_1,\mu_1)\,\delta(Nq-\pmb\sigma\cdot\mathbf s)\bigg)}
\end{equation}
Both the denominator and the logarithm are treated using the replica trick, which yields
\begin{equation}
\Sigma_{12}
=\frac1N\lim_{n\to0}\lim_{m\to0}\frac\partial{\partial n}\overline{\int\left(\prod_{b=1}^md\nu_H(\pmb\sigma_b,\varsigma_b\mid E_0,\mu_0)\right)\left(\prod_{a=1}^nd\nu_H(\mathbf s_a,\omega_a\mid E_1,\mu_1)\,\delta(Nq-\pmb \sigma_1\cdot \mathbf s_a)\right)}
\end{equation}
Note that because of the structure of \eqref{eq:complexity.definition},
$\pmb\sigma_1$ is special among the set of $\pmb\sigma$ replicas, since only it
is constrained to lie a given overlap from the $\mathbf s$ replicas. This
replica asymmetry will be important later.
\subsection{The Hessian factors}
The double partial derivatives of the energy are Gaussian with the variance
\begin{equation}
\overline{(\partial_i\partial_jH(\mathbf s))^2}=\frac1Nf''(1)
\end{equation}
which means that the matrix of partial derivatives belongs to the GOE class. Its spectrum is given by the Wigner semicircle
\begin{equation}
\rho(\lambda)=\begin{cases}
\frac2{\pi}\sqrt{1-\big(\frac{\lambda}{\mu_\text m}\big)^2} & \lambda^2\leq\mu_\text m^2 \\
0 & \text{otherwise}
\end{cases}
\end{equation}
with radius $\mu_\text m=\sqrt{4f''(1)}$. Since the Hessian differs from the
matrix of partial derivatives by adding the constant diagonal matrix $\omega
I$, it follows that the spectrum of the Hessian is a Winger semicircle shifted
by $\omega$, or $\rho(\lambda+\omega)$.
The average over factors depending on the Hessian alone can be made separately
from those depending on the gradient or energy, since for random Gaussian
fields the Hessian is independent of these \cite{Bray_2007_Statistics}. In
principle the fact that we have conditioned the Hessian to belong to stationary
points of certain energy, stability, and proximity to another stationary point
will modify its statistics, but these changes will only appear at subleading
order in $N$ \cite{Ros_2019_Complexity}. At leading order, the various expectations factorize, each yielding
\begin{equation}
\overline{\big|\det\operatorname{Hess}H(\mathbf s,\omega)\big|\,\delta\big(N\mu-\operatorname{Tr}\operatorname{Hess}H(\mathbf s,\omega)\big)}
=e^{N\int d\lambda\,\rho(\lambda+\mu)\log|\lambda|}\delta(N\mu-N\omega)
\end{equation}
Therefore, all of the Lagrange multipliers are fixed identically to the stabilities $\mu$. We define the function
\begin{equation}
\begin{aligned}
\mathcal D(\mu)
&=\int d\lambda\,\rho(\lambda+\mu)\log|\lambda| \\
&=\begin{cases}
\frac12+\log\left(\frac12\mu_\text m\right)+\frac{\mu^2}{\mu_\text m^2}
& \mu^2\leq\mu_\text m^2 \\
\frac12+\log\left(\frac12\mu_\text m\right)+\frac{\mu^2}{\mu_\text m^2}
-\left|\frac{\mu}{\mu_\text m}\right|\sqrt{\big(\frac\mu{\mu_\text m}\big)^2-1}
-\log\left(\left|\frac{\mu}{\mu_\text m}\right|-\sqrt{\big(\frac\mu{\mu_\text m}\big)^2-1}\right) & \mu^2>\mu_\text m^2
\end{cases}
\end{aligned}
\end{equation}
and the full factor due to the Hessians is
\begin{equation}
e^{Nm\mathcal D(\mu_0)+Nn\mathcal D(\mu_1)}\left[\prod_a^m\delta(N\mu_0-N\varsigma_a)\right]\left[\prod_a^n\delta(N\mu_1-N\omega_a)\right]
\end{equation}
\subsection{The other factors}
Having integrated over the Lagrange multipliers using the $\delta$ functions
resulting from the average of the Hessians, the remaining part of the integrand
has the form
\begin{equation}
e^{
Nm\hat\beta_0E_0+Nn\hat\beta_1E_1
-\sum_a^m\left[(\pmb\sigma_a\cdot\hat{\pmb\sigma}_a)\mu_0
-\frac12\hat\mu_0(N-\pmb\sigma_a\cdot\pmb\sigma_a)
\right]
-\sum_a^n\left[(\mathbf s_a\cdot\hat{\mathbf s}_a)\mu_1
-\frac12\hat\mu_1(N-\mathbf s_a\cdot\mathbf s_a)
-\frac12\hat\mu_{12}(Nq-\pmb\sigma_1\cdot\mathbf s_a)
\right]
+\int d\mathbf t\,\mathcal O(\mathbf t)H(\mathbf t)
}
\end{equation}
where we have introduced the linear operator
\begin{equation}
\mathcal O(\mathbf t)
=\sum_a^m\delta(\mathbf t-\pmb\sigma_a)\left(
i\hat{\pmb\sigma}_a\cdot\partial_{\mathbf t}-\hat\beta_0
\right)
+
\sum_a^n\delta(\mathbf t-\mathbf s_a)\left(
i\hat{\mathbf s}_a\cdot\partial_{\mathbf t}-\hat\beta_1
\right)
\end{equation}
We have written the $H$-dependant terms in this strange form for the ease of taking the average over $H$: since it is Gaussian-correlated, it follows that
\begin{equation}
\overline{e^{\int d\mathbf t\,\mathcal O(\mathbf t)H(\mathbf t)}}
=e^{\frac12\int d\mathbf t\,d\mathbf t'\,\mathcal O(\mathbf t)\mathcal O(\mathbf t')\overline{H(\mathbf t)H(\mathbf t')}}
=e^{N\frac12\int d\mathbf t\,d\mathbf t'\,\mathcal O(\mathbf t)\mathcal O(\mathbf t')f\big(\frac{\mathbf t\cdot\mathbf t'}N\big)}
\end{equation}
It remains only to apply the doubled operators to $f$ and then evaluate the simple integrals over the $\delta$ measures. We do not include these details, which are standard.
\subsection{Hubbard--Stratonovich}
Having expanded this expression, we are left with an argument in the exponential which is a function of scalar products between the fields $\mathbf s$, $\hat{\mathbf s}$, $\pmb\sigma$, and $\hat{\pmb\sigma}$. We will change integration coordinates from these fields to matrix fields given by the scalar products, defined as
\begin{align} \label{eq:fields}
C^{00}_{ab}=\frac1N\pmb\sigma_a\cdot\pmb\sigma_b &&
R^{00}_{ab}=-i\frac1N{\pmb\sigma}_a\cdot\hat{\pmb\sigma}_b &&
D^{00}_{ab}=\frac1N\hat{\pmb\sigma}_a\cdot\hat{\pmb\sigma}_b \\
C^{01}_{ab}=\frac1N\pmb\sigma_a\cdot\mathbf s_b &&
R^{01}_{ab}=-i\frac1N{\pmb\sigma}_a\cdot\hat{\mathbf s}_b &&
R^{10}_{ab}=-i\frac1N\hat{\pmb\sigma}_a\cdot{\mathbf s}_b &&
D^{01}_{ab}=\frac1N\hat{\pmb\sigma}_a\cdot\hat{\mathbf s}_b \\
C^{11}_{ab}=\frac1N\mathbf s_a\cdot\mathbf s_b &&
R^{11}_{ab}=-i\frac1N{\mathbf s}_a\cdot\hat{\mathbf s}_b &&
D^{11}_{ab}=\frac1N\hat{\mathbf s}_a\cdot\hat{\mathbf s}_b
\end{align}
We insert into the integral the product of $\delta$ functions enforcing these
definitions, integrated over the new matrix fields, which is equivalent to
multiplying by one. Once this is done, the many scalar products appearing
throughout can be replaced by the matrix fields, and the original vector fields
can be integrated over. Conjugate matrix field integrals created when the
$\delta$ functions are promoted to exponentials can be evaluated by saddle
point in the standard way, yielding an effective action depending on the above
matrix fields alone.
We will always assume that the square matrices $C^{00}$, $R^{00}$, $D^{00}$,
$C^{11}$, $R^{11}$, and $D^{11}$ are hierarchical matrices, with each set of
three sharing the same hierarchical structure. In particular, we immediately
define $c_\mathrm d^{00}$, $r_\mathrm d^{00}$, $d_\mathrm d^{00}$, $c_\mathrm d^{11}$, $r_\mathrm d^{11}$, and
$d_\mathrm d^{11}$ as the value of the diagonal elements of these matrices,
respectively. Note that $c_\mathrm d^{00}=c_\mathrm d^{11}=1$ due to the spherical constraint.
Defining the `block' fields $\mathcal Q_{00}=(\hat\beta_0, \hat\mu_0, C^{00},
R^{00}, D^{00})$, $\mathcal Q_{11}=(\hat\beta_1, \hat\mu_1, C^{11}, R^{11},
D^{11})$, and $\mathcal Q_{01}=(\hat\mu_{01},C^{01},R^{01},R^{10},D^{01})$
the resulting complexity is
\begin{equation}
\Sigma_{01}
=\frac1N\lim_{n\to0}\lim_{m\to0}\frac\partial{\partial n}\int d\mathcal Q_{00}\,d\mathcal Q_{11}\,d\mathcal Q_{01}\,e^{Nm\mathcal S_0(\mathcal Q_{00})+Nn\mathcal S_1(\mathcal Q_{00},\mathcal Q_{11},\mathcal Q_{01})}
\end{equation}
where
\begin{equation}
\begin{aligned}
&\mathcal S_0(\mathcal Q_{00})
=\hat\beta_0E_0-r^{00}_\mathrm d\mu_0-\frac12\hat\mu_0(1-c^{00}_\mathrm d)+\mathcal D(\mu_0)\\
&\quad+\frac1m\bigg\{
\frac12\sum_{ab}^m\left[
\hat\beta_1^2f(C^{00}_{ab})+(2\hat\beta_1R^{00}_{ab}-D^{00}_{ab})f'(C^{00}_{ab})+(R_{ab}^{00})^2f''(C_{ab}^{00})
\right]+\frac12\log\det\begin{bmatrix}C^{00}&R^{00}\\R^{00}&D^{00}\end{bmatrix}
\bigg\}
\end{aligned}
\end{equation}
is the action for the ordinary, one-point complexity, and remainder is given by
\begin{equation}
\begin{aligned}
&\mathcal S(\mathcal Q_{00},\mathcal Q_{11},\mathcal Q_{01})
=\hat\beta_1E_1-r^{11}_\mathrm d\mu_1-\frac12\hat\mu_1(1-c^{11}_\mathrm d)+\mathcal D(\mu_1) \\
&\quad+\frac1n\sum_b^n\left\{-\frac12\hat\mu_{12}(q-C^{01}_{1b})+\sum_a^m\left[
\hat\beta_0\hat\beta_1f(C^{01}_{ab})+(\hat\beta_0R^{01}_{ab}+\hat\beta_1R^{10}_{ab}-D^{01}_{ab})f'(C^{01}_{ab})+R^{01}_{ab}R^{10}_{ab}f''(C^{01}_{ab})
\right]\right\}
\\
&\quad+\frac1n\bigg\{
\frac12\sum_{ab}^n\left[
\hat\beta_1^2f(C^{11}_{ab})+(2\hat\beta_1R^{11}_{ab}-D^{11}_{ab})f'(C^{11}_{ab})+(R^{11}_{ab})^2f''(C^{11}_{ab})
\right]\\
&\quad+\frac12\log\det\left(
\begin{bmatrix}
C^{11}&iR^{11}\\iR^{11}&D^{11}
\end{bmatrix}-
\begin{bmatrix}
C^{01}&iR^{01}\\iR^{10}&D^{01}
\end{bmatrix}^T
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
\begin{bmatrix}
C^{01}&iR^{01}\\iR^{10}&D^{01}
\end{bmatrix}
\right)
\bigg\}
\end{aligned}
\end{equation}
Because of the structure of this problem in the twin limits of $m$ and $n$ to
zero, the parameters $\mathcal Q_{00}$ can be evaluated at a saddle point of
$\mathcal S_0$ alone. This means that these parameters will take the same value
they take when the ordinary, 1-point complexity is calculated. For a replica
symmetric complexity of the reference point, this results in
\begin{align}
\hat\beta_0
&=-\frac{(\epsilon_0+\mu_0)f'(1)+\epsilon_0f''(1)}{f(1)\big(f'(1)+f''(1)\big)-f'(1)^2}\\
r_\mathrm d^{00}
&=\frac{\mu_0f(1)+\epsilon_0f'(1)}{f(1)\big(f'(1)+f''(1)\big)-f'(1)^2} \\
d_\mathrm d^{00}
&=\frac1{f'(1)}
-\left(
\frac{\mu_0f(1)+\epsilon_0f'(1)}{f(1)\big(f'(1)+f''(1)\big)-f'(1)^2}
\right)^2
\end{align}
In general, we except the $m\times n$ matrices $C^{01}$, $R^{01}$, $R^{10}$,
and $D^{01}$ to have constant \emph{rows} of length $n$, with blocks of rows
corresponding to the \textsc{rsb} structure of the single-point complexity. For
the scope of this paper, where we restrict ourselves to replica symmetric
complexities, they have the following form at the saddle point:
\begin{align}
C^{01}=
\begin{subarray}{l}
\hphantom{[}\begin{array}{ccc}\leftarrow&n&\rightarrow\end{array}\hphantom{\Bigg]}\\
\left[
\begin{array}{ccc}
q&\cdots&q\\
0&\cdots&0\\
\vdots&\ddots&\vdots\\
0&\cdots&0
\end{array}
\right]\begin{array}{c}
\\\uparrow\\m-1\\\downarrow
\end{array}
\end{subarray}
&&
R^{01}
=\begin{bmatrix}
r_{01}&\cdots&r_{01}\\
0&\cdots&0\\
\vdots&\ddots&\vdots\\
0&\cdots&0
\end{bmatrix}
&&
R^{10}
=\begin{bmatrix}
r_{10}&\cdots&r_{10}\\
0&\cdots&0\\
\vdots&\ddots&\vdots\\
0&\cdots&0
\end{bmatrix}
&&
D^{01}
=\begin{bmatrix}
d_{01}&\cdots&d_{01}\\
0&\cdots&0\\
\vdots&\ddots&\vdots\\
0&\cdots&0
\end{bmatrix}
\end{align}
where only the first row is nonzero as a result of the sole linear term
proportional to $C_{1b}^{01}$ in the action.
The inverse of block hierarchical matrix is still a block hierarchical matrix, since
\begin{equation}
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
=
\begin{bmatrix}
(C^{00}D^{00}+R^{00}R^{00})^{-1}D^{00} & -i(C^{00}D^{00}+R^{00}R^{00})^{-1}R^{00} \\
-i(C^{00}D^{00}+R^{00}R^{00})^{-1}R^{00} & (C^{00}D^{00}+R^{00}R^{00})^{-1}C^{00}
\end{bmatrix}
\end{equation}
Because of the structure of the 01 matrices, the volume element will depend only on the diagonal if this matrix. If we write
\begin{align}
\tilde c_\mathrm d^{00}&=[(C^{00}D^{00}+R^{00}R^{00})^{-1}C^{00}]_{\text d} \\
\tilde r_\mathrm d^{00}&=[(C^{00}D^{00}+R^{00}R^{00})^{-1}R^{00}]_{\text d} \\
\tilde d_\mathrm d^{00}&=[(C^{00}D^{00}+R^{00}R^{00})^{-1}D^{00}]_{\text d}
\end{align}
then the result is
\begin{equation}
\begin{aligned}
& \begin{bmatrix}
C^{01}&iR^{01}\\iR^{10}&D^{01}
\end{bmatrix}^T
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
\begin{bmatrix}
C^{01}&iR^{01}\\iR^{10}&D^{01}
\end{bmatrix} \\
&\qquad=\begin{bmatrix}
q^2\tilde d_\mathrm d^{00}+2qr_{10}\tilde r^{00}_\mathrm d-r_{10}^2\tilde d^{00}_\mathrm d
&
i\left[d_{01}(r_{10}\tilde c^{00}_\mathrm d-q\tilde r^{00}_\mathrm d)+r_{01}(r_{10}\tilde r^{00}_\mathrm d+q\tilde d^{00}_\mathrm d)\right]
\\
i\left[d_{01}(r_{10}\tilde c^{00}_\mathrm d-q\tilde r^{00}_\mathrm d)+r_{01}(r_{10}\tilde r^{00}_\mathrm d+q\tilde d^{00}_\mathrm d)\right]
&
d_{01}^2\tilde c^{00}_\mathrm d+2r_{01}d_{01}\tilde r^{00}_\mathrm d-r_{01}^2\tilde d^{00}_\mathrm d
\end{bmatrix}
\end{aligned}
\end{equation}
where each block is a constant $n\times n$ matrix.
Because the matrices $C^{00}$, $R^{00}$, and $D^{00}$ are diagonal in this case, the diagonals of the inverse block matrix from above are simple expressions:
\begin{align}
\tilde c_\mathrm d^{00}=f'(1) &&
\tilde r_\mathrm d^{00}=r^{00}_\mathrm df'(1) &&
\tilde d_\mathrm d^{00}=d^{00}_\mathrm df'(1)
\end{align}
\begin{equation}
\begin{aligned}
&\Sigma_{12}=\mathcal D(\mu_1)-\frac12+\hat\beta_1E_1-r^{11}_\mathrm d\mu_1
+\hat\beta_1\big(r^{11}_\mathrm df'(1)-r^{11}_0f'(q^{11}_0)\big)
+\hat\beta_0\hat\beta_1f(q)+(\hat\beta_0r^{01}+\hat\beta_1r^{10}+r^{00}_\mathrm d r^{01})f'(q)
\\
&+\frac{r^{11}_\mathrm d-r^{11}_0}{1-q^{11}_0}(r^{10}-qr^{00}_\mathrm d)f'(q)+
\frac12\Bigg\{
\hat\beta_1^2\big(f(1)-f(q^{11}_{0})\big)
+(r^{11}_\mathrm d)^2f''(1)+2r^{01}r^{10}f''(q)-(r^{11}_0)^2f''(q^{11}_0)
\\
&+\left(
(r^{01})^2-\frac{r^{11}_\mathrm d-r^{11}_0}{1-q^{11}_0}\left(2qr^{01}-\frac{(1-q^2)r^{11}_0-(q^{11}_0-q^2)r^{11}_\mathrm d}{1-q^{11}_0}\right)
\right)\big(f'(1)-f'(q_{22}^{(0)})\big) \\
&+\frac{1-q^2}{1-q^{11}_0}+\frac{(r^{10}-qr^{00}_\mathrm d)^2}{1-q^{11}_0}f'(1)
-\frac1{f'(1)}\frac{f'(1)^2-f'(q)^2}{f'(1)-f'(q^{11}_0)}
+\frac{r^{11}_\mathrm d-r^{11}_0}{1-q^{11}_0}\big(r^{11}_\mathrm df'(1)-r^{11}_0f'(q^{11}_0)\big)
\\
&+\log\left(\frac{1-q_{11}^0}{f'(1)-f'(q_{11}^0)}\right)
\Bigg\}
\end{aligned}
\end{equation}
\subsection{Most common neighbors with given overlap}
The most common neighbors of a reference point are given by further extremizing
the two-point complexity over the energy $E_1$ and stability $\mu_1$ of the
nearby points. This gives the conditions
\begin{align}
\hat\beta_1=0 &&
\mu_1=2r^{11}_\mathrm df''(1)
\end{align}
where the second is only true for $\mu_1^2\leq\mu_\mathrm m^2$, i.e., when the
nearby points are saddle points. Under the conditions where stationary points
can be found arbitrarily close to their neighbors, we can produce explicit
formulae for the complexity and the properties of the most common neighbors by
expanding in powers of $\Delta q=1-q$. For the complexity, the result is
\begin{equation}
\Sigma_{12}=\frac{f'''(1)}{8f''(1)^2}(\mu_\mathrm m^2-\mu_0^2)\left(\sqrt{2+\frac{2f''(1)(f''(1)-f'(1))}{f'''(1)f'(1)}}-1\right)(1-q)
+O\big((1-q)^2\big)
\end{equation}
The popular of stationary points that are most common at each energy have the relation
\begin{equation}
E_\mathrm{dom}(\mu_0)=-\frac{f'(1)^2+f(1)\big(f''(1)-f'(1)\big)}{2f''(1)f'(1)}\mu_0
\end{equation}
between $E_0$ and $\mu_0$ for $\mu_0^2\leq\mu_\mathrm m^2$. Using this most common value, the energy and stability of the most common neighbors at small $\Delta q$ are
\begin{equation}
E_1=E_0+\frac12\frac{f'(1)(f'''(1)+f''(1))-f''(1)^2}{f(1)(f'(1)+f''(1))-f'(1)^2}\big(E_0-E_\mathrm{dom}(\mu_0)\big)(1-q)^2+O\big((1-q)^3\big)
\end{equation}
\begin{equation}
\mu_1=\mu_0-\frac{f'(1)(f'''(1)+f''(1))-f''(1)^2}{f(1)(f'(1)+f''(1))-f'(1)^2}\big(E_0-E_\mathrm{dom}(\mu_0)\big)(1-q)+O\big((1-q)^2\big)
\end{equation}
Therefore, whether the energy and stability of nearby points increases or
decreases from that of the reference point depends only on whether the energy
of the reference point is above or below that of the most common population at
the same stability. In particular, since $E_\mathrm{dom}(\mu_\mathrm
m)=E_\mathrm{th}$, the threshold energy is also the pivot around which the
points asymptotically nearby marginal minima change their properties.
To examine better the population of marginal points, it is necessary to look at
the next term in the series of the complexity with $\delta q$, since the linear
coefficient becomes zero at the marginal line. This tells us something
intuitive: stable minima have an effective repulsion between points, and one
always finds a sufficiently small $\Delta q$ that no stationary points are
point any nearer. For the marginal minima, it is not clear that the same should be true.
\section{Isolated eigenvalue}
\label{sec:eigenvalue}
The two-point complexity depends on the spectrum at both stationary points
through the determinant of their Hessians, but only on the bulk of the
distribution. As we saw, this bulk is unaffected by the conditions of energy
and proximity. However, these conditions give rise to small-rank perturbations
to the Hessian, which can lead a subextensive number of eigenvalues leaving the
bulk. We study the possibility of \emph{one} stray eigenvalue.
We use a technique recently developed to find the smallest eigenvalue of a
random matrix \cite{Ikeda_2023_Bose-Einstein-like}. One defines a quadratic
statistical mechanics model with configurations defined on the sphere, whose
interaction tensor is given by the matrix of interest. By construction, the
ground state is located in the direction of the eigenvector associated with the
smallest eigenvalue, and the ground state energy is proportional to that
eigenvalue.
Our matrix of interest is the Hessian evaluated at a stationary point of the mixed spherical
model, conditioned on the relative position, energies, and stabilities
discussed above. We must restrict the artificial spherical model to lie in the
tangent plane of the `real' spherical configuration space at the point of
interest, to avoid our eigenvector pointing in a direction that violates the
spherical constraint. The free energy of this model given a point $\mathbf s$
and a specific realization of the disordered Hamiltonian is
\begin{equation}
\begin{aligned}
\beta F_H(\beta\mid\mathbf s,\omega)
&=-\frac1N\log\left(\int d\mathbf x\,\delta(\mathbf x\cdot\mathbf s)\delta(\|\mathbf x\|^2-N)\exp\left\{
-\beta\frac12\mathbf x^T\operatorname{Hess}H(\mathbf s,\omega)\mathbf x
\right\}\right) \\
&=-\lim_{\ell\to0}\frac1N\frac\partial{\partial\ell}\int\left[\prod_{\alpha=1}^\ell d\mathbf x_\alpha\,\delta(\mathbf x_\alpha^T\mathbf s)\delta(N-\mathbf x_\alpha^T\mathbf x_\alpha)\exp\left\{
-\beta\frac12\mathbf x^T_\alpha\big(\partial\partial H(\mathbf s)+\omega I\big)\mathbf x_\alpha
\right\}\right]
\end{aligned}
\end{equation}
where the first $\delta$-function keeps the configurations in the tangent
plane, and the second enforces the spherical constraint. We have anticipated
treating the logarithm with replicas. We are of course interested in
points $\mathbf s$ that have certain properties: they are stationary points of
$H$ with given energy density and stability, and fixed overlap from a reference
configuration $\pmb\sigma$. We therefore average the free energy above over
such points, giving
\begin{equation}
\begin{aligned}
F_H(\beta\mid E_1,\mu_1,q,\pmb\sigma)
&=\int\frac{d\nu_H(\mathbf s,\omega\mid E_1,\mu_1)\delta(Nq-\pmb\sigma\cdot\mathbf s)}{\int d\nu_H(\mathbf s',\omega'\mid E_1,\mu_1)\delta(Nq-\pmb\sigma\cdot\mathbf s')}F_H(\beta\mid\mathbf s,\omega) \\
&=\lim_{n\to0}\int\left[\prod_{a=1}^nd\nu_H(\mathbf s_a,\omega_a\mid E_1,\mu_1)\,\delta(Nq-\pmb\sigma\cdot\mathbf s_a)\right]F_H(\beta\mid\mathbf s_1,\omega_1)
\end{aligned}
\end{equation}
again anticipating the use of replicas. Finally, the reference configuration $\pmb\sigma$ should itself be a stationary point of $H$ with its own energy density and stability. Averaging over these conditions gives
\begin{equation}
\begin{aligned}
F_H(\beta\mid\epsilon_1,\mu_1,\epsilon_2,\mu_2,q)
&=\int\frac{d\nu_H(\pmb\sigma,\varsigma\mid E_0,\mu_0)}{\int d\nu_H(\pmb\sigma',\varsigma'\mid E_0,\mu_0)}\,F_H(\beta\mid E_1,\mu_1,q,\pmb\sigma) \\
&=\lim_{m\to0}\int\left[\prod_{a=1}^m d\nu_H(\pmb\sigma_a,\varsigma_a\mid E_0,\mu_0)\right]\,F_H(\beta\mid E_1,\mu_1,q,\pmb\sigma_1)
\end{aligned}
\end{equation}
This formidable expression is now ready to be averaged over the disordered Hamiltonians $H$. Once averaged,
the minimum eigenvalue of the conditioned Hessian is then given by twice the ground state energy, or
\begin{equation}
\lambda_\text{min}=2\lim_{\beta\to\infty}\overline{F_H(\beta\mid\epsilon_1,\mu_1,\epsilon_2,\mu_2,q)}
\end{equation}
For this calculation, there are three different sets of replicated variables.
Note that, as for the computation of the complexity, the $\pmb\sigma_1$ and
$\mathbf s_1$ replicas are \emph{special}. The first again is the only of the
$\sigma$ replicas constrained to lie at fixed overlap with \emph{all} the
$\mathbf s$ replicas, and the second is the only of the $\mathbf s$ replicas at
which the Hessian is evaluated.
\begin{figure}
\centering
\begin{tikzpicture}
\def\R{4 } % sphere radius
\def\Rt{2 } % tangent plane radius
\def\angEl{15} % elevation angle
\def\angsa{-160} % azimuth of s_1
\def\angq{40} % elevation of constraint circle
\filldraw[ball color=white] (0,0) circle (\R);
% \filldraw[fill=white] (0,0) circle (\R);
\foreach \t in {0,\angq} { \DrawLatitudeCircle[\R]{\t} }
%\foreach \t in {\angsa} { \DrawLongitudeCircle[\R]{\t} }
\pgfmathsetmacro\H{\R*cos(\angEl)} % distance to north pole
\coordinate (O) at (0,0);
\node[circle,draw,black,scale=0.3] at (0,0) {};
\coordinate (N) at (0,\H);
\draw node[right=10,below] at (0,\H){$\pmb\sigma_1$};
\draw[thick, ->](O)--(N);
\NewLatitudePlane[planeP]{\R}{\angEl}{\angq};
\path[planeP] (\angsa:\R) coordinate (P);
\path[planeP] (0:1.5*\R) coordinate (Q);
\path[planeP] (0:\R) coordinate (Q2);
\draw[left] node at (P){$\mathbf s_1$};
\NewLatitudePlane[equator]{\R}{\angEl}{00};
\path[equator] (-30:\R) coordinate (Pprime);
\path[equator] (0:{1.5*cos(\angq)*\R}) coordinate (Qe);
\path[equator] (0:\R) coordinate (Qe2);
\draw node[right=5,below] at (Pprime){$\pmb\sigma_c$};
\NewLatitudePlane[sbplane]{\R}{\angEl}{\angq};
\path[sbplane] (20:\R) coordinate (sb);
\draw node[right=3,above=1] at (sb){$\mathbf s_b$};
\TangentPlane[tplane]{\R}{\angEl}{\angq}{\angsa};
\draw[tplane,fill=gray,fill opacity=0.3] circle (\Rt);
\draw[tplane,->,thick] (0,0) -> ({\Rt*cos(160)},{\Rt*sin(160)}) node[above=1.5,right] {$\mathbf x_a$};
\draw[tplane,->,thick] (0,0) -> ({\Rt*cos(250)},{\Rt*sin(250)}) node[above=1.5,left=0.1] {$\mathbf x_b$};
\draw[thick, ->] (O)->(P);
\draw[thick, ->] (O)->(Pprime);
\draw[thick, ->] (O)->(sb);
\draw[dotted] (Qe) -- (Qe2);
\draw[dotted] (Q2) -- (Q);
\draw[decorate, decoration = {brace,raise=3}] (Q) -- (Qe) node[pos=0.5,right=7]{$q$};
\end{tikzpicture}
\caption{
A sketch of the vectors involved in the calculation of the isolated
eigenvalue. All replicas $\mathbf x$ sit in an $N-2$ sphere corresponding
with the tangent plane (not to scale) of the first $\mathbf s$ replica. All of the
$\mathbf s$ replicas lie on the sphere, constrained to be at fixed overlap
$q$ with the first of the $\pmb\sigma$ replicas, the reference
configuration. All of the $\pmb\sigma$ replicas lie on the sphere.
}
\end{figure}
Using the same methodology as above, the disorder-dependant terms are captured in the linear operator
\begin{equation}
\mathcal O(\mathbf t)=
\sum_a^m\delta(\mathbf t-\pmb\sigma_a)(i\hat{\pmb\sigma}_a\cdot\partial_\mathbf t-\hat\beta_0)
+
\sum_b^n\delta(\mathbf t-\mathbf s_b)(i\hat{\mathbf s}_b\cdot\partial_\mathbf t-\hat\beta_1)
-\frac12
\delta(\mathbf t-\mathbf s_1)\beta\sum_c^\ell(\mathbf x_c\cdot\partial_{\mathbf t})^2
\end{equation}
\begin{align}
A_{ab}=\frac1N\mathbf x_a\cdot\mathbf x_b
&&
X^0_{ab}=\frac1N\pmb\sigma_a\cdot\mathbf x_b
&&
\hat X^0_{ab}=-i\frac1N\hat{\pmb\sigma}_a\cdot\mathbf x_b
&&
X^1_{ab}=\frac1N\mathbf s_a\cdot\mathbf x_b
&&
\hat X^1_{ab}=-i\frac1N\hat{\mathbf s}_a\cdot\mathbf x_b
\end{align}
\begin{equation}
\lambda_\mathrm{min}
=-2\lim_{\beta\to\infty}
\lim_{\substack{\ell\to0\\m\to0\\n\to0}}\frac\partial{\partial\ell}\frac1{\beta N}
\int d\mathcal Q\,d\mathcal X\,
e^{N[
m\mathcal S_0(\mathcal Q_{00})
+n\mathcal S_1(\mathcal Q_{11},\mathcal Q_{01}\mid\mathcal Q_{00})
+\ell\mathcal S_x(\mathcal X\mid\mathcal Q_{00},\mathcal Q_{01},\mathcal Q_{11})
]}
\end{equation}
\begin{equation}
\begin{aligned}
\ell\mathcal S_x(\mathcal X\mid\mathcal Q)
=-\frac12\beta\mu+
\frac12\beta\sum_b^\ell\bigg\{
\frac12\beta&f''(1)\sum_a^lA_{ab}^2\\
&+\sum_a^m\left[
\big(\hat\beta_0f''(C^{01}_{a1})+R^{10}_{a1}f'''(C^{01}_{a1})\big)(X^0_{ab})^2
+2f''(C^{01}_{a1})X^0_{ab}\hat X^0_{ab}
\right] \\
&+\sum_a^n\left[
\big(\hat\beta_1f''(C^{11}_{a1})+R^{11}_{a1}f'''(C^{11}_{a1})\big)(X^1_{ab})^2
+2f''(C^{11}_{a1})X^1_{ab}\hat X^1_{ab}
\right]
\bigg\}\\
&+\frac12\log\det\left(
A-
\begin{bmatrix}
X^0\\\hat X^0\\X^1\\\hat X^1
\end{bmatrix}^T
\begin{bmatrix}
C^{00}&iR^{00}&C^{01}&iR^{01}\\
iR^{00}&D^{00}&iR^{10}&D^{01}\\
(C^{01})^T&(iR^{10})^T&C^{11}&iR^{11}\\
(iR^{01})^T&(D^{01})^T&iR^{11}&D^{11}\\
\end{bmatrix}^{-1}
\begin{bmatrix}
X^0\\\hat X^0\\X^1\\\hat X^1
\end{bmatrix}
\right)
\end{aligned}
\end{equation}
\begin{align}
X^0
=
\begin{subarray}{l}
\hphantom{[}\begin{array}{ccc}\leftarrow&\ell&\rightarrow\end{array}\hphantom{\Bigg]}\\
\left[
\begin{array}{ccc}
x_0&\cdots&x_0\\
0&\cdots&0\\
\vdots&\ddots&\vdots\\
0&\cdots&0
\end{array}
\right]\begin{array}{c}
\\\uparrow\\m-1\\\downarrow
\end{array}\\
\vphantom{\begin{array}{c}n\end{array}}
\end{subarray}
&&
\hat X^0
=
\left[
\begin{array}{ccc}
\hat x_0&\cdots&\hat x_0\\
0&\cdots&0\\
\vdots&\ddots&\vdots\\
0&\cdots&0
\end{array}
\right]
&&
X^1
=
\begin{subarray}{l}
\hphantom{[}\begin{array}{ccc}\leftarrow&\ell&\rightarrow\end{array}\hphantom{\Bigg]}\\
\left[
\begin{array}{ccc}
0&\cdots&0\\
x_1&\cdots&x_1\\
\vdots&\ddots&\vdots\\
x_1&\cdots&x_1
\end{array}
\right]\begin{array}{c}
\\\uparrow\\n-1\\\downarrow
\end{array}\\
\vphantom{\begin{array}{c}n\end{array}}
\end{subarray}
&&
\hat X^1
=\begin{bmatrix}
\hat x_1^0&\cdots&\hat x_1^0\\
\hat x_1^1&\cdots&\hat x_1^1\\
\vdots&\ddots&\vdots\\
\hat x_1^1&\cdots&\hat x_1^1
\end{bmatrix}
\end{align}
\begin{equation}
\begin{aligned}
\frac2\beta\lim_{\ell\to0}\mathcal S_x(\mathcal X\mid\mathcal Q)
&=
-\mu+\frac12\beta f''(1)(1-a_0^2)
+\big(\hat\beta_0f''(q)+r_{10}f'''(q)\big)x_0^2
+2f''(q)x_0\hat x_0 \\
&-
\big(\hat\beta_1f''(q^{11}_0)+r^{11}_0f'''(q^{11}_0)\big)x_1^2
-2f''(q^{11}_0)x_1\hat x_1^1 \\
&+\lim_{\ell\to0}\frac1\ell\frac1\beta\log\det\left(
A-
\begin{bmatrix}
X^0\\\hat X^0\\X^1\\\hat X^1
\end{bmatrix}^T
\begin{bmatrix}
C^{00}&iR^{00}&C^{01}&iR^{01}\\
iR^{00}&D^{00}&iR^{10}&D^{01}\\
(C^{01})^T&(iR^{10})^T&C^{11}&iR^{11}\\
(iR^{01})^T&(D^{01})^T&iR^{11}&D^{11}\\
\end{bmatrix}^{-1}
\begin{bmatrix}
X^0\\\hat X^0\\X^1\\\hat X^1
\end{bmatrix}
\right)
\end{aligned}
\end{equation}
\begin{equation}
\begin{bmatrix}
C^{00}&iR^{00}&C^{01}&iR^{01}\\
iR^{00}&D^{00}&iR^{10}&D^{01}\\
(C^{01})^T&(iR^{10})^T&C^{11}&iR^{11}\\
(iR^{01})^T&(D^{10})^T&iR^{11}&D^{11}\\
\end{bmatrix}^{-1}
=
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\end{equation}
\begin{equation}
A=
\left(
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}
-
\begin{bmatrix}
C^{01}&iR^{01}\\
iR^{10}&D^{01}
\end{bmatrix}
\begin{bmatrix}
C^{11}&iR^{11}\\iR^{11}&D^{11}
\end{bmatrix}^{-1}
\begin{bmatrix}
C^{01}&iR^{01}\\
iR^{10}&D^{01}
\end{bmatrix}^T
\right)^{-1}
\end{equation}
\begin{align}
\hat c^{11}=\sum_{ij}^n[(C^{11}D^{11}+R^{11}R^{11})^{-1}D^{11}]_{ij}\\
\hat r^{11}=\sum_{ij}^n[(C^{11}D^{11}+R^{11}R^{11})^{-1}R^{11}]_{ij}\\
\hat d^{11}=\sum_{ij}^n[(C^{11}D^{11}+R^{11}R^{11})^{-1}D^{11}]_{ij}
\end{align}
Based on the structure of the 01 matrices established above, the second term inside the inverse is
\begin{equation}
\begin{aligned}
& \begin{bmatrix}
C^{01}&iR^{01}\\iR^{10}&D^{01}
\end{bmatrix}
\begin{bmatrix}
C^{11}&iR^{11}\\iR^{11}&D^{11}
\end{bmatrix}^{-1}
\begin{bmatrix}
C^{01}&iR^{01}\\iR^{10}&D^{01}
\end{bmatrix}^T \\
&\qquad=\begin{bmatrix}
q^2\hat d^{11}+2qr_{10}\hat r^{11}-r_{10}^2\hat d^{11}
&
i\left[d_{01}(r_{10}\hat c^{11}-q\hat r^{11})+r_{01}(r_{10}\hat r^{11}+q\hat d^{11})\right]
\\
i\left[d_{01}(r_{10}\hat c^{11}-q\hat r^{11})+r_{01}(r_{10}\hat r^{11}+q\hat d^{11})\right]
&
d_{01}^2\hat c^{11}+2r_{01}d_{01}\hat r^{11}-r_{01}^2\hat d^{11}
\end{bmatrix}
\end{aligned}
\end{equation}
where each block is proportional to the $m\times m$ matrix
\begin{equation}
\begin{bmatrix}
1&0&\cdots&0\\
0&0&\cdots&0\\
\vdots&\vdots&\ddots&\vdots\\
0&0&\cdots&0
\end{bmatrix}
\end{equation}
which is \emph{not} a hierarchical matrix! But, all these new hat variables are proportional to $n$, and will vanish when the eventual limit is taken. So, the whole contribution is zero, and
\begin{equation}
A=
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
\end{equation}
\begin{equation}
B=-
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
\begin{bmatrix}
C^{01}&iR^{01}\\
iR^{10}&D^{01}
\end{bmatrix}
\begin{bmatrix}
C^{11}&iR^{11}\\iR^{11}&D^{11}
\end{bmatrix}^{-1}
\end{equation}
\begin{equation}
C=-
\begin{bmatrix}
C^{11}&iR^{11}\\iR^{11}&D^{11}
\end{bmatrix}^{-1}
\begin{bmatrix}
C^{01}&iR^{01}\\
iR^{10}&D^{01}
\end{bmatrix}^T
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}=B^T
\end{equation}
\begin{equation}
D=
\left(
\begin{bmatrix}
C^{11}&iR^{11}\\iR^{11}&D^{11}
\end{bmatrix}
-
\begin{bmatrix}
C^{01}&iR^{01}\\
iR^{10}&D^{01}
\end{bmatrix}^T
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
\begin{bmatrix}
C^{01}&iR^{01}\\
iR^{10}&D^{01}
\end{bmatrix}
\right)^{-1}
\end{equation}
\begin{equation}
\begin{bmatrix}
X_0\\i\hat X_0
\end{bmatrix}^TA
\begin{bmatrix}
X_0\\i\hat X_0
\end{bmatrix}
+
2\begin{bmatrix}
X_0\\i\hat X_0
\end{bmatrix}^TB
\begin{bmatrix}
X_1\\i\hat X_1
\end{bmatrix}
+
\begin{bmatrix}
X_1\\i\hat X_1
\end{bmatrix}^TD
\begin{bmatrix}
X_1\\i\hat X_1
\end{bmatrix}
\end{equation}
\[
\log\det(A-c)=\log\det A-\frac{c}{\sum_{i=0}^k(a_{i+1}-a_i)x_{i+1}}
\]
where $a_{k+1}=1$ and $x_{k+1}=1$.
So the basic form of the action is (for replica symmetric $A$)
\[
-\mu+\frac14\beta^2f''(1)(1-a_0^2)+\frac12\log(1-a_0)+\frac12\frac{a_0}{1-a_0}+\frac12\begin{bmatrix}x_0\\\hat x_0\\x_1\\\hat x_1^1\\\hat x_1^0\end{bmatrix}^T\left(\beta B-\frac1{1-a_0}C\right)\begin{bmatrix}x_0\\\hat x_0\\x_1\\\hat x_1^1\\\hat x_1^0\end{bmatrix}
\]
for
\[
B=\begin{bmatrix}
\hat\beta_0f''(q)+r_{10}f'''(q)&f''(q)&0&0&0\\
f''(q)&0&0&0&0\\
0&0&-\hat\beta_1f''(q^{11}_0)-r^{11}_0f'''(q^{11}_0)&-f''(q_0^{11})&0\\
0&0&-f''(q_0^{11})&0&0\\
0&0&0&0&0
\end{bmatrix}
\]
\begin{align}
&
C_{11}=d^{00}_\mathrm df'(1)
\quad
C_{12}=r^{00}_\mathrm df'(1)
\quad
C_{22}=-f'(1)
\\
&
C_{13}
=\frac1{1-q_0}\left(
(r^{11}_d-r^{11}_0)\left(r^{01}-q\frac{r^{11}_d-r^{11}_0}{1-q_0}\right)(f'(1)-f'(q_0))+qf'(1)d^{00}_d+r^{00}_d(r^{10}f'(1)+(r^{11}_d-r^{11}_0)f'(q))
\right)
\\
&
C_{15}=r^{00}_df'(q)+\left(r^{01}-q\frac{r^{11}_d-r^{11}_0}{1-q_0}\right)(f'(1)-f'(q_0))
\quad
C_{14}=-C_{15}
\\
&
C_{23}=\frac1{1-q_0}\left((qr^{00}_d-r^{10})f'(1)-(r^{11}_d-r^{11}_0)f'(q)\right)
\quad
C_{24}=f'(q)
\quad
C_{25}=-C_{24}
\\
&
C_{33}
=
-\frac{r^{11}_d-r^{11}_0}{1-q_0}\left[
\frac{r^{11}_d-r^{11}_0}{1-q_0}f'(1)
-2\left(
\frac{qr^{01}-r^{11}_0}{1-q_0}+\frac{1-q^2}{1-q_0}\frac{r^{11}_d-r^{11}_0}{1-q_0}
\right)(f'(1)-f'(q_0))
-2\frac{qr^{00}-r^{10}}{1-q_0}f'(q)
\right]\\
&\qquad-\frac{1-q^2}{(1-q_0)^2}-\frac{(r^{10}-qr^{00}_d)^2}{(1-q_0)^2}f'(1)
\\
&
C_{34}
=-(qr^{01}-r^{11}_0)\frac{f'(1)-f'(q_0)}{1-q_0}-\frac{r^{11}_d-r^{11}_0}{1-q_0}\left(
\frac{1-q^2}{1-q_0}(f'(1)-f'(q_0))-f'(q_0)
\right)-f'(q)\frac{qr^{00}_d-r^{10}}{1-q_0}
\\
&
C_{35}=-C_{34}-\frac{r^{11}_d-r^{11}_0}{1-q_0}(f'(1)-f'(q_0))
\quad
C_{44}=f'(1)-2f'(q_0)
\quad
C_{45}=f'(q_0)
\quad
C_{55}=-f'(1)
\end{align}
Use $X$ for the big vector. Then
\[
0=-\beta^2f''(1)a_0+\frac{a_0-X^TCX}{(1-a_0)^2}
\]
\[
0=\bigg(\beta B-\frac1{1-a_0}C\bigg)X
\]
For a non-trivial solution, we require the following: change of basis in $X$ to diagonalize the matrix $\beta B-C/(1-a_0)$. Then, all of the new basis vectors of $X$ are zero except one, and the second equation is satisfied by tuning $a_0$ to make the coefficient zero. Finally, the first equation is satisfied by choice of the magnitude of this basis vector.
Suppose $a_0=1-1/(y\beta)$, $X\sim X+O(1/\beta)$. Then
\[
0=-f''(1)(1-(y\beta)^{-1})+y^2\left(1-(y\beta)^{-1}-X^TCX\right)
\]
For large $\beta$
\[
0=-f''(1)+y^2(1-X^TCX)
\]
\[
0=(B-yC)X
\]
which gives
\[
\mathcal S=-\frac12\beta\mu+\frac14\beta^2f''(1)\big(2(y\beta)^{-1}-(y\beta)^{-2}\big)-\frac12\log(y\beta)+\frac12y\beta(1-(y\beta)^{-1})+\frac12\beta X^TBX-\frac12y\beta X^TCX
\]
so
\[
\lambda_\mathrm{min}=-2\lim_{\beta\to\infty}\frac{\partial\mathcal S}{\partial\beta}
=\mu-\left(y+\frac1yf''(1)\right)-X^T(B-yC)X
=\mu-\left(y+\frac1yf''(1)\right)
\]
assuming the last equation is satisfied. The trivial solution, which gives the bottom of the semicircle, is for $X=0$, so the first equation is $y^2=f''(1)$, and
\[
\lambda_\mathrm{min}=\mu-\sqrt{4f''(1)}=\mu-\mu_\mathrm m
\]
as expected. We need to first the nontrivial solutions with nonzero $X$, but
because the coefficients are so nasty this will be a numeric problem...
Specifically, we are good for $y$ where one of the eigenvalues of $B-yC$ is
zero. In this case, if the associated normalized eigenvector is $\hat X$, its magnitude is set by
\begin{equation}
\|X\|^2=\frac1{\hat X^TC\hat X}\left(1-\frac{f''(1)}{y^2}\right)
\end{equation}
In practice, we find that $\hat X^TC\hat X$ is positive. Therefore, for the
solution to make sense we must have $y^2>f''(1)$. In practice, there is at most
\emph{one} $y$ which produces a zero eigenvalue of $B-yC$ and satisfies this
inequality, so the solution seems to be unique.
\section{Franz--Parisi potential}
\label{sec:franz-parisi}
\cite{Franz_1995_Recipes}
\begin{equation} \label{eq:franz-parisi.definition}
\beta V_\beta(q\mid E_0,\mu_0)
=-\frac1N\overline{\int\frac{d\nu_H(\pmb\sigma,\varsigma\mid E_0,\mu_0)}{\int d\nu_H(\pmb\sigma',\varsigma'\mid E_0,\mu_0)}\,
\log\bigg(\int d\mathbf s\,\delta\big(\|\mathbf s\|^2-N\big)\,\delta(\pmb\sigma\cdot\mathbf s-Nq)\,e^{-\beta H(\mathbf s)}\bigg)}
\end{equation}
Both the denominator and the logarithm are treated using the replica trick, which yields
\begin{equation}
\beta V_\beta(q\mid E_0,\mu_0)
=-\frac1N\lim_{\substack{m\to0\\n\to0}}\frac\partial{\partial n}\overline{\int\left(\prod_{b=1}^md\nu_H(\pmb\sigma_b,\varsigma_b\mid E_0,\mu_0)\right)\left(\prod_{a=1}^nd\mathbf s_a\,\delta(\|\mathbf s_a\|^2-N)\,\delta(\pmb \sigma_1\cdot \mathbf s_a-Nq)\,e^{-\beta H(\mathbf s_a)}\right)}
\end{equation}
\begin{equation}
\mathcal O(\mathbf t)
=\sum_a^m\delta(\mathbf t-\pmb\sigma_a)\left(
i\hat{\pmb\sigma}_a\cdot\partial_{\mathbf t}-\hat\beta_0
\right)
-\beta
\sum_a^n\delta(\mathbf t-\mathbf s_a)
\end{equation}
\begin{equation}
\beta V_\beta(q\mid E_0,\mu_0)=-\frac1N\lim_{\substack{m\to0\\n\to0}}\frac\partial{\partial n}\int d\mathcal Q_0\,d\mathcal Q_1\,e^{Nm\mathcal S_0(\mathcal Q_0)+Nn\mathcal S_\mathrm{FP}(\mathcal Q_1)}
\end{equation}
\begin{equation}
n\mathcal S_{\mathrm{FP}}
=\frac12\beta^2\sum_{ab}^nf(Q_{ab})
+\beta\sum_a^m\sum_b^n\left[
\hat\beta_0f(C^{01}_{ab})
+R^{10}_{ab}f'(C^{01}_{ab})
\right]
+\frac12\log\det\left(
Q-\begin{bmatrix}C^{01}\\iR^{10}\end{bmatrix}^T\begin{bmatrix}C^{00}&iR^{00}\\iR^{00}&D^{00}\end{bmatrix}^{-1}\begin{bmatrix}C^{01}\\iR^{10}\end{bmatrix}
\right)
\end{equation}
\begin{equation}
\begin{aligned}
\beta V_\beta&=\frac12\beta^2\big[f(1)-(1-x)f(q_1)-xf(q_0)\big]
+\beta\hat\beta_0f(q)+\beta r^{10}f'(q)-\frac{1-x}x\log(1-q_1)
+\frac1x\log(1-(1-x)q_1-xq_0) \\
&+\frac{q_0-d^{00}_df'(1)q^2-2r^{00}_df'(1)r^{10}q+(r^{10})^2f'(1)}{
1-(1-x)q_1-xq_0
}
\end{aligned}
\end{equation}
The saddle point for $r^{10}$ can be taken explicitly. After this, we take the
limit of $\beta\to\infty$. There are two possibilities. First, in the replica
symmetric case $x=1$, and in the limit of large $\beta$ $q_0$ will scale like
$q_0=1-(y_0\beta)^{-1}$. Inserting this, the limit is
\begin{equation}
V_\infty^{\textsc{rs}}=-\hat\beta_0 f(q)-r^{11}_\mathrm df'(q)q-\frac12\left(y_0(1-q^2)+\frac{f'(1)^2-f'(q)^2}{y_0f'(1)}\right)
\end{equation}
The saddle point in $y_0$ can now be taken, taking care to choose the solution for $y_0>0$. This gives
\begin{equation}
V_\infty^{\textsc{rs}}=-\hat\beta_0f(q)-r^{11}_\mathrm df'(q)q-\sqrt{(1-q^2)\left(1-\frac{f'(q)^2}{f'(1)^2}\right)}
\end{equation}
The second case is when the inner statistical mechanics problem has replica symmetry breaking. Here, $q_0$ approaches a nontrivial limit, but $x=z\beta^{-1}$ approaches zero and $q_1=1-(y_1\beta)^{-1}$ approaches one.
\begin{equation}
\begin{aligned}
V_\infty^{\oldstylenums{1}\textsc{rsb}}(q\mid E_0,\mu_0)
&=-\hat\beta_0f(q)-r^{11}_\mathrm df'(q)q-\frac12\bigg(
z(f(1)-f(q_0))+\frac{f'(1)}{y_1}-\frac{y_1(q^2-q_0)}{1+y_1z(1-q_0)} \\
&\hspace{8pc}-(1+y_1z(1-q_0))\frac{f'(q)^2}{y_1f'(1)}+\frac1z\log\left(1+zy_1(1-q_0)\right)
\bigg)
\end{aligned}
\end{equation}
Though the saddle point in $y_1$ can be evaluated in this expression, it
delivers no insight. The final potential is found by taking the saddle over
$z$, $y_1$, and $q_0$.
\section{Conclusion}
\label{sec:conclusion}
The methods developed in this paper are straightforwardly (if not easily)
generalized to landscapes with replica symmetry broken complexities.
\paragraph{Acknowledgements}
\paragraph{Funding information}
\printbibliography
\end{document}
|