1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
|
\documentclass[fleqn,a4paper]{article}
\usepackage[utf8]{inputenc} % why not type "Bézout" with unicode?
\usepackage[T1]{fontenc} % vector fonts plz
\usepackage{fullpage,amsmath,amssymb,latexsym,graphicx}
\usepackage{newtxtext,newtxmath} % Times for PR
\usepackage{appendix}
\usepackage[dvipsnames]{xcolor}
\usepackage[
colorlinks=true,
urlcolor=MidnightBlue,
citecolor=MidnightBlue,
filecolor=MidnightBlue,
linkcolor=MidnightBlue
]{hyperref} % ref and cite links with pretty colors
\usepackage[
style=phys,
eprint=true,
maxnames = 100
]{biblatex}
\usepackage{anyfontsize,authblk}
\addbibresource{2-point.bib}
\begin{document}
\title{
Arrangement of nearby minima and saddles in the mixed $p$-spin energy landscape
}
\author{Jaron Kent-Dobias}
\affil{\textsc{DynSysMath}, Istituto Nazionale di Fisica Nucleare, Sezione di Roma}
\maketitle
\begin{abstract}
\end{abstract}
\cite{Ros_2020_Distribution, Ros_2019_Complex, Ros_2019_Complexity}
The mixed $p$-spin models are defined by the Hamiltonian
\begin{equation} \label{eq:hamiltonian}
H(\mathbf s)=-\sum_p\frac1{p!}\sum_{i_1\cdots i_p}^NJ^{(p)}_{i_1\cdots i_p}s_{i_1}\cdots s_{i_p}
\end{equation}
where the vectors $\mathbf s\in\mathbb R^N$ are confined to the sphere
$\|\mathbf s\|^2=N$. The coupling coefficients $J$ are fully-connected and random, with
zero mean and variance $\overline{(J^{(p)})^2}=a_pp!/2N^{p-1}$ scaled so that
the energy is typically extensive. The overbar denotes an average
over the coefficients $J$. The factors $a_p$ in the variances are freely chosen
constants that define the particular model. For instance, the `pure'
$p$-spin model has $a_{p'}=\delta_{p'p}$. This class of models encompasses all
statistically isotropic gaussian random Hamiltonians defined on the
hypersphere.
The covariance between the energy at two different points is a function of the overlap, or dot product, between those points, or
\begin{equation} \label{eq:covariance}
\overline{H(\mathbf s_1)H(\mathbf s_2)}=Nf\left(\frac{\mathbf s_1\cdot\mathbf s_2}N\right)
\end{equation}
where the function $f$ is defined from the coefficients $a_p$ by
\begin{equation}
f(q)=\frac12\sum_pa_pq^p
\end{equation}
In this paper, we will focus on models with a replica symmetric complexity.
We introduce the Kac--Rice \cite{Kac_1943_On, Rice_1944_Mathematical} measure
\begin{equation}
d\nu_H(\mathbf s)
=d\mathbf s\,\delta\big(\nabla H(\mathbf s)\big)\,
\big|\det\operatorname{Hess}H(\mathbf s)\big|
\end{equation}
which counts stationary points of the function $H$. More interesting is the
measure conditioned on the energy density $E$ and stability $\mu$,
\begin{equation}
d\nu_H(\mathbf s\mid E,\mu)
=d\nu_H(\mathbf s)\,
\delta\big(H(\mathbf s)-NE\big)\,
\delta\big(N\mu-\operatorname{Tr}\operatorname{Hess}H(\mathbf s)\big)
\end{equation}
We want the typical number of stationary points with energy density
$E_2$ and stability $\mu_2$ that lie a fixed overlap $q$ from a reference
stationary point of energy density $E_1$ and stability $\mu_1$.
\begin{align*}
\Sigma_{12}
&=\frac1N\overline{\int\frac{d\nu_H(\mathbf s_0\mid E_0,\mu_0)}{\int d\nu_H(\mathbf s_0'\mid E_0,\mu_0)}\,
\log\bigg(\int d\nu_H(\mathbf s_1\mid E_1,\mu_1)\,\delta(Nq-\mathbf s_0\cdot\mathbf s_1)\bigg)}
\end{align*}
\begin{align*}
\Sigma_{12}
&=\frac1N\lim_{n\to0}\lim_{m\to-1}\overline{\int d\nu_H(\mathbf s_0\mid E_0,\mu_0)\left(\int d\nu_H(\mathbf s_0'\mid E_0,\mu_0)\right)^m\,
\frac\partial{\partial n}\bigg(\int d\nu_H(\mathbf s_1\mid E_1,\mu_1)\,\delta(Nq-\mathbf s_0\cdot \mathbf s_1)\bigg)^n}\\
&=\frac1N\lim_{n\to0}\lim_{m\to0}\frac\partial{\partial n}\overline{\int\left(\prod_{b=1}^md\nu_H(\pmb\sigma_b\mid E_0,\mu_0)\right)\left(\prod_{a=1}^nd\nu_H(\mathbf s_a\mid E_1,\mu_1)\,\delta(Nq-\pmb \sigma_1\cdot \mathbf s_a)\right)}
\end{align*}
\begin{equation}
\overline{\big|\det\operatorname{Hess}H(s)\big|\,\delta\big(N\mu-\operatorname{Tr}\operatorname{Hess}H(s)\big)}
=e^{N\int d\lambda\,\rho(\lambda+\mu)\log|\lambda|}\delta(N\mu-s\cdot\partial H)
\end{equation}
\begin{equation}
\rho(\lambda)=\begin{cases}
\frac2{\pi}\sqrt{1-\big(\frac{\lambda}{\mu_\text m}\big)^2} & \lambda^2\leq\mu_\text m^2 \\
0 & \text{otherwise}
\end{cases}
\end{equation}
\begin{equation}
\begin{aligned}
\mathcal D(\mu)
&=\int d\lambda\,\rho(\lambda+\mu)\ln|\lambda| \\
&=\begin{cases}
\frac12+\log\left(\frac12\mu_\text m\right)+\frac\mu{\mu_\text m}\left(\frac\mu{\mu_\text m}-\sqrt{\big(\frac\mu{\mu_\text m}\big)^2-1}\right)
-\log\left(\frac{\mu}{\mu_\text m}-\sqrt{\big(\frac\mu{\mu_\text m}\big)^2-1}\right) & \mu>\mu_\text m \\
\frac12+\log\left(\frac12\mu_\text m\right)+\frac{\mu^2}{\mu_\text m^2}
& -\mu_\text m\leq\mu\leq\mu_\text m \\
\frac12+\log\left(\frac12\mu_\text m\right)+\frac\mu{\mu_\text m}\left(\frac\mu{\mu_\text m}+\sqrt{\big(\frac\mu{\mu_\text m}\big)^2-1}\right)
-\log\left(\frac{\mu}{\mu_\text m}+\sqrt{\big(\frac\mu{\mu_\text m}\big)^2-1}\right) & \mu<-\mu_\text m
\end{cases}
\end{aligned}
\end{equation}
\begin{align}
\mathcal Q_{00}=\begin{bmatrix}
\hat\beta_0\\\hat\mu_0\\C^{00}\\R^{00}\\D^{00}
\end{bmatrix}
&&
\mathcal Q_{11}=\begin{bmatrix}
\hat\beta_1\\\hat\mu_1\\C^{11}\\R^{11}\\D^{11}
\end{bmatrix}
&&
\mathcal Q_{01}=\begin{bmatrix}
\hat\mu_{01}\\C^{01}\\R^{01}\\R_{10}\\D^{01}
\end{bmatrix}
\end{align}
\begin{equation}
\Sigma_{01}
=\frac1N\lim_{n\to0}\lim_{m\to0}\frac\partial{\partial n}\int d\mathcal Q_{00}\,d\mathcal Q_{11}\,d\mathcal Q_{01}\,e^{Nm\mathcal S_0(\mathcal Q_{00})+Nn\mathcal S_1(\mathcal Q_{00},\mathcal Q_{11},\mathcal Q_{01})}
\end{equation}
\begin{equation}
\begin{aligned}
&\mathcal S_0(\mathcal Q_{00})
=-\hat\beta_0E_0-r^{00}_d\mu_0-\frac12\hat\mu_0(1-c^{00}_d)+\mathcal D(\mu_0)\\
&\quad+\frac1m\bigg\{
\frac12\sum_{ab}^m\left[
\hat\beta_1^2f(C^{00}_{ab})-(2\hat\beta_1R^{00}_{ab}+D^{00}_{ab})f'(C^{00}_{ab})+(R_{ab}^{00})^2f''(C_{ab}^{00})
\right]+\frac12\log\det\begin{bmatrix}C^{00}&R^{00}\\R^{00}&D^{00}\end{bmatrix}
\bigg\}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
&\mathcal S(\mathcal Q_{00},\mathcal Q_{11},\mathcal Q_{01})
=-\hat\beta_1E_1-\mu_1r^{11}_d-\frac12\hat\mu_1(1-c^{11}_d) \\
&\quad+\frac1n\sum_b^n\left\{-\frac12\hat\mu_{12}(q-C^{01}_{1b})+\sum_a^m\left[
\hat\beta_0\hat\beta_1f(C^{01}_{ab})-(\hat\beta_0R^{01}_{ab}+\hat\beta_1R^{10}_{ab}+D^{01}_{ab})f'(C^{01}_{ab})+R^{01}_{ab}R^{10}_{ab}f''(C^{01}_{ab})
\right]\right\}
\\
&\quad+\frac1n\bigg\{
\frac12\sum_{ab}^n\left[
\hat\beta_1^2f(C^{11}_{ab})-(2\hat\beta_1R^{11}_{ab}+D^{11}_{ab})f'(C^{11}_{ab})+(R^{11}_{ab})^2f''(C^{11}_{ab})
\right]\\
&\quad+\frac12\log\det\left(
\begin{bmatrix}
C^{11}&iR^{11}\\iR^{11}&D^{11}
\end{bmatrix}-
\begin{bmatrix}
C^{01}&iR^{01}\\iR^{10}&D^{01}
\end{bmatrix}^T
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
\begin{bmatrix}
C^{01}&iR^{01}\\iR^{10}&D^{01}
\end{bmatrix}
\right)
\bigg\}
\end{aligned}
\end{equation}
\begin{align}
C^{01}
=
\begin{subarray}{l}
\hphantom{[}\begin{array}{ccc}\leftarrow&n&\rightarrow\end{array}\hphantom{\Bigg]}\\
\left[
\begin{array}{ccc}
q&\cdots&q\\
0&\cdots&0\\
\vdots&\ddots&\vdots\\
0&\cdots&0
\end{array}
\right]\begin{array}{c}
\\\uparrow\\m-1\\\downarrow
\end{array}\\
\vphantom{\begin{array}{c}n\end{array}}
\end{subarray}
&&
R^{01}
=\begin{bmatrix}
r_{01}&\cdots&r_{01}\\
0&\cdots&0\\
\vdots&\ddots&\vdots\\
0&\cdots&0
\end{bmatrix}
&&
R^{10}
=\begin{bmatrix}
r_{10}&\cdots&r_{10}\\
0&\cdots&0\\
\vdots&\ddots&\vdots\\
0&\cdots&0
\end{bmatrix}
&&
D^{01}
=\begin{bmatrix}
d_{01}&\cdots&d_{01}\\
0&\cdots&0\\
\vdots&\ddots&\vdots\\
0&\cdots&0
\end{bmatrix}
\end{align}
The inverse of block hierarchical matrix is still a block hierarchical matrix, since (dropping the superscripts for clarity)
\begin{equation}
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
=
\begin{bmatrix}
(C^{00}D^{00}+R^{00}R^{00})^{-1}D^{00} & -i(C^{00}D^{00}+R^{00}R^{00})^{-1}R^{00} \\
-i(C^{00}D^{00}+R^{00}R^{00})^{-1}R^{00} & (C^{00}D^{00}+R^{00}R^{00})^{-1}C^{00}
\end{bmatrix}
\end{equation}
Because of the structure of the 01 matrices, the volume element will depend only on the diagonal if this matrix. If we write
\begin{align}
\tilde c_d^{00}&=[(C^{00}D^{00}+R^{00}R^{00})^{-1}C^{00}]_{11} \\
\tilde r_d^{00}&=[(C^{00}D^{00}+R^{00}R^{00})^{-1}R^{00}]_{11} \\
\tilde d_d^{00}&=[(C^{00}D^{00}+R^{00}R^{00})^{-1}D^{00}]_{11}
\end{align}
In the replica symmetric case,
\begin{align}
\tilde c_d^{00}=\frac1{(r^{00}_d)^2+d^{00}_d} &&
\tilde r_d^{00}=\frac{r^{00}_d}{(r^{00}_d)^2+d^{00}_d} &&
\tilde d_d^{00}=\frac{d^{00}_d}{(r^{00}_d)^2+d^{00}_d}
\end{align}
\begin{equation}
\begin{bmatrix}
q^2\tilde d_d^{00}+2qr_{10}\tilde r^{00}_d-r_{10}^2\tilde d^{00}_d
&
i\left[d_{01}(r_{10}\tilde c^{00}_d-q\tilde r^{00}_d)+r_{01}(r_{10}\tilde r^{00}_d+q\tilde d^{00}_d)\right]
\\
i\left[d_{01}(r_{10}\tilde c^{00}_d-q\tilde r^{00}_d)+r_{01}(r_{10}\tilde r^{00}_d+q\tilde d^{00}_d)\right]
&
d_{01}^2\tilde c^{00}_d+2r_{01}d_{01}\tilde r^{00}_d-r_{01}^2\tilde d^{00}_d
\end{bmatrix}
\end{equation}
where each block is a constant $n\times n$ matrix.
In the twin limits of $m$ and $n$ to zero, the saddle point conditions for the variables involving only the reference critical point (those in $\mathcal Q_{00}$) reduce to the ordinary, 1-point conditions. With a replica-symmetric ansatz, these conditions are
\begin{align}
\hat\beta_0
&=-\frac{(\epsilon_0+\mu_0)f'(1)+\epsilon_0f''(1)}{f(1)\big(f'(1)+f''(1)\big)-f'(1)^2}\\
r_d^{00}
&=\frac{\mu_0f(1)+\epsilon_0f'(1)}{f(1)\big(f'(1)+f''(1)\big)-f'(1)^2} \\
d_d^{00}
&=\frac1{f'(1)}
-\left(
\frac{\mu_0f(1)+\epsilon_0f'(1)}{f(1)\big(f'(1)+f''(1)\big)-f'(1)^2}
\right)^2
\end{align}
\begin{align*}
&
\begin{bmatrix}
\tilde c&\tilde r\\\tilde r&\tilde d
\end{bmatrix}
=
\begin{bmatrix}
q&ir_{10}\\ir_{01}&d_{01}
\end{bmatrix}
\begin{bmatrix}
1&ir_{0}\\
ir_{0}&d_{0}
\end{bmatrix}^{-1}
\begin{bmatrix}
q&ir_{01}\\ir_{10}&d_{01}
\end{bmatrix}\\
&=
\frac1{r_{0}^2+d_{0}}\begin{bmatrix}
q^2d_{0}+2qr_{0}r_{10}-r_{10}^2
&
i\left[d_{01}(r_{10}-r_0q)+r_{01}(r_0r_{10}+d_0q)\right]
\\
i\left[d_{01}(r_{10}-r_0q)+r_{01}(r_0r_{10}+d_0q)\right]
&
d_{01}^2+2r_{0}r_{01}d_{01}-d_{0}r_{01}^2
\end{bmatrix}
\end{align*}
This matrix with modify the diagonal of the RS matrix for the second spin.
Define $\tilde C=C-\tilde c$, $\tilde R=R-\tilde r$, $\tilde D=D-\tilde d$. Then
\begin{align*}
&\Sigma_{12}
=\mathcal D(\mu_1)+\hat\beta_1E_1-\hat\mu_1
+\hat\beta_0\hat\beta_1f(q)+(\hat\beta_0r_{01}+\hat\beta_1r_{10}-d_{01})f'(q)+r_{01}r_{10}f''(q)
\\&
+\lim_{n\to0}\frac1n\bigg\{
\frac12\sum_{ab}\left[
\hat\beta_1^2f(C_{ab})+(2\hat\beta_1R_{ab}-D_{ab})f'(C_{ab})+R_{ab}^2f''(C_{ab})
\right]
\\&
+\hat\mu_1\operatorname{Tr}C-\mu_1\operatorname{Tr}R
+\frac12\log\det((C-\tilde c)(D-\tilde d)+(R-\tilde r)^2)
\bigg\}
\end{align*}
These equations for $D^*$ are the same as those for the unpinned case, or
\[
0=-\frac12f'(C)+\frac12((C-\tilde c)(D-\tilde d)+(R-\tilde r)^2)^{-1}(C-\tilde c)
\]
Solving, we get
\[
D=\tilde d+f'(C)^{-1}-(C-\tilde c)^{-1}(R-\tilde r)^2
\]
\begin{align*}
&\Sigma_{12}
=\mathcal D(\mu_1)+\hat\beta_1E_1-\frac12\hat\mu_1
+\hat\beta_0\hat\beta_1f(q)+(\hat\beta_0r_{01}+\hat\beta_1r_{10}-d_{01})f'(q)+r_{01}r_{10}f''(q)
\\&
+\lim_{n\to0}\frac1n\bigg\{
\frac12\sum_{ab}\left[
\hat\beta_1^2f(C_{ab})+(2\hat\beta_1R_{ab}-(f'(C)^{-1}_{ab}-((C-\tilde c)^{-1}(R-\tilde r)^2)_{ab}-\tilde d))f'(C_{ab})+R_{ab}^2f''(C_{ab})
\right]
\\&
+\frac12\hat\mu_1\operatorname{Tr}C-\mu_1\operatorname{Tr}R
+\frac12\log\det(C-\tilde c)-\frac12\log\det f'(C)
\bigg\}
\end{align*}
\begin{align*}
0&=C^*-f'(C)(C^*D^*+R^*R^*) \\
0&=\big[\hat\beta_1f'(C)-\mu_1I+R\odot f''(C)\big](C-\tilde c)+f'(C)(R-\tilde r)
\end{align*}
\begin{align*}
0&=-f'(q)+\frac12(C^*D^*+R^*R^*)^{-1}_{ij}\left(
C^*_{jk}\frac{D^*_{ki}}{d_{01}}
+
2R^*_{jk}\frac{R^*_{ki}}{d_{01}}
\right)
\end{align*}
\begin{equation}
\hat\beta_2E_2-r_{22}^{(0)}\mu_2\frac12\left\{
\hat\beta_2^2\big(f(1)-f(q_{22}^{(0)})\big)
+\left(
r_{12}^2+2\hat\beta_2r_{22}-\frac{2q_{12}r_{12}(r_{22}-r_{22}^{(0)})}{1-q_{22}^{(0)}}
\right)\big(f'(1)-f'(q_{22}^{(0)})\big)
\right\}
\end{equation}
What about the average for the Hessian terms?
\[
\overline{
|\det\operatorname{Hess}H(s_0)|\delta(\mu_0-\operatorname{Tr}\operatorname{Hess}H(s_0))|\det\operatorname{Hess}H(s_a)|\delta(\mu_1-\operatorname{Tr}\operatorname{Hess}H(s_a))
}
\]
\section{Isolated eigenvalue}
\begin{align*}
\beta F(\beta\mid\mathbf s)
&=-\frac1N\log\left(\int d\mathbf x\,\delta(\mathbf x\cdot\mathbf s)\delta(N-\mathbf x\cdot\mathbf x)\exp\left\{
-\beta\frac12\mathbf x^T\partial\partial H(\mathbf s)\mathbf x
\right\}\right) \\
&=-\lim_{\ell\to0}\frac1N\frac\partial{\partial\ell}\int\left[\prod_{\alpha=1}^\ell d\mathbf x_\alpha\,\delta(\mathbf x_\alpha^T\mathbf s)\delta(N-\mathbf x_\alpha^T\mathbf x_\alpha)\exp\left\{
-\beta\frac12\mathbf x^T_\alpha\partial\partial H(\mathbf s)\mathbf x_\alpha
\right\}\right]
\end{align*}
\begin{align*}
F(\beta\mid E_1,\mu_1,q,\pmb\sigma)
&=\int\frac{d\nu(\mathbf s\mid E_1,\mu_1)\delta(Nq-\pmb\sigma\cdot\mathbf s)}{\int d\nu(\mathbf s'\mid E_1,\mu_1)\delta(Nq-\pmb\sigma\cdot\mathbf s')}F(\beta\mid\mathbf s) \\
&=\lim_{n\to0}\int\left[\prod_{a=1}^nd\nu(\mathbf s_a\mid E_1,\mu_1)\,\delta(Nq-\pmb\sigma\cdot\mathbf s_a)\right]F(\beta\mid\mathbf s_1)
\end{align*}
\[
\begin{aligned}
F(\beta\mid\epsilon_1,\mu_1,\epsilon_2,\mu_2,q)
&=\int\frac{d\nu(\pmb\sigma\mid E_0,\mu_0)}{\int d\nu(\pmb\sigma'\mid E_0,\mu_0)}\,F(\beta\mid E_1,\mu_1,q,\pmb\sigma) \\
&=\lim_{m\to0}\int\left[\prod_{a=1}^m d\nu(\pmb\sigma_a\mid E_0,\mu_0)\right]\,F(\beta\mid E_1,\mu_1,q,\pmb\sigma_1)
\end{aligned}
\]
\begin{align}
&\log\det
\begin{bmatrix}
C^{00}&iR^{00}&C^{01}&iR^{01}&X_1\\
iR^{00}&D^{00}&iR^{10}&D^{01}&\hat X_1\\
C^{01})^T&iR^{10})^T&C^{11}&iR^{11}&X_2\\
iR^{01})^T&D^{10})^T&iR^{11}&D^{11}&\hat X_2\\
X_1)^T&\hat X_1)^T&X_2)^T&\hat X_2)^T&A
\end{bmatrix}\\
&=\log\det\left(
A-
\begin{bmatrix}
X_1\\\hat X_1\\X_2\\\hat X_2
\end{bmatrix})^T
\begin{bmatrix}
C^{00}&iR^{00}&C^{01}&iR^{01}\\
iR^{00}&D^{00}&iR^{10}&D^{01}\\
(C^{01})^T&(iR^{10})^T&C^{11}&iR^{11}\\
(iR^{01})^T&(D^{10})^T&iR^{11}&D^{11}\\
\end{bmatrix}^{-1}
\begin{bmatrix}
X_1\\\hat X_1\\X_2\\\hat X_2
\end{bmatrix}
\right)
\end{align}
\begin{equation}
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\end{equation}
\begin{equation}
A=
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
+
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
\begin{bmatrix}
C^{01}&iR^{01}\\
iR^{10}&D^{01}
\end{bmatrix}
D
\begin{bmatrix}
C^{01}&iR^{01}\\
iR^{10}&D^{01}
\end{bmatrix}^T
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
\end{equation}
\begin{equation}
B=-
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
\begin{bmatrix}
C^{01}&iR^{01}\\
iR^{10}&D^{01}
\end{bmatrix}
D
\end{equation}
\begin{equation}
C=-
D
\begin{bmatrix}
C^{01}&iR^{01}\\
iR^{10}&D^{01}
\end{bmatrix}^T
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
\end{equation}
\begin{equation}
D=
\left(
\begin{bmatrix}
C^{11}&iR^{11}\\iR^{11}&D^{11}
\end{bmatrix}
-
\begin{bmatrix}
C^{01}&iR^{01}\\
iR^{10}&D^{01}
\end{bmatrix}^T
\begin{bmatrix}
C^{00}&iR^{00}\\iR^{00}&D^{00}
\end{bmatrix}^{-1}
\begin{bmatrix}
C^{01}&iR^{01}\\
iR^{10}&D^{01}
\end{bmatrix}
\right)^{-1}
\end{equation}
\begin{equation}
\begin{bmatrix}
X_0\\\hat X_0
\end{bmatrix}^TA
\begin{bmatrix}
X_0\\\hat X_0
\end{bmatrix}
+
\begin{bmatrix}
X_1\\\hat X_1
\end{bmatrix}^TC
\begin{bmatrix}
X_0\\\hat X_0
\end{bmatrix}
+
\begin{bmatrix}
X_0\\\hat X_0
\end{bmatrix}^TB
\begin{bmatrix}
X_1\\\hat X_1
\end{bmatrix}
+
\begin{bmatrix}
X_1\\\hat X_1
\end{bmatrix}^TD
\begin{bmatrix}
X_1\\\hat X_1
\end{bmatrix}
\end{equation}
\begin{align}
X_0
=
\begin{subarray}{l}
\hphantom{[}\begin{array}{ccc}\leftarrow&m&\rightarrow\end{array}\hphantom{\Bigg]}\\
\left[
\begin{array}{ccc}
x_0&\cdots&x_0\\
\vdots&\ddots&\vdots\\
x_0&\cdots&x_0
\end{array}
\right]\begin{array}{c}
\uparrow\\\ell\\\downarrow
\end{array}\\
\vphantom{\begin{array}{c}n\end{array}}
\end{subarray}
&&
\hat X_0
=\begin{bmatrix}
\hat x_0&\cdots&\hat x_0\\
\vdots&\ddots&\vdots\\
\hat x_0&\cdots&\hat x_0
\end{bmatrix}
&&
X_1
=
\begin{subarray}{l}
\hphantom{[}\begin{array}{ccc}\leftarrow&n&\rightarrow\end{array}\hphantom{\Bigg]}\\
\left[
\begin{array}{ccc}
q&\cdots&q\\
0&\cdots&0\\
\vdots&\ddots&\vdots\\
0&\cdots&0
\end{array}
\right]\begin{array}{c}
\\\uparrow\\m-1\\\downarrow
\end{array}\\
\vphantom{\begin{array}{c}n\end{array}}
\end{subarray}
&&
D^{01}
=\begin{bmatrix}
d_{01}&\cdots&d_{01}\\
0&\cdots&0\\
\vdots&\ddots&\vdots\\
0&\cdots&0
\end{bmatrix}
\end{align}
\paragraph{Acknowledgements}
\paragraph{Funding information}
\printbibliography
\end{document}
|