summaryrefslogtreecommitdiff
path: root/blossom5-v2.05.src/block.h
blob: 3bed9d4ede830229bcb9fe8798071f542302e23e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/* block.h */
/*
	Template classes Block and DBlock
	Implement adding and deleting items of the same type in blocks.

	If there there are many items then using Block or DBlock
	is more efficient than using 'new' and 'delete' both in terms
	of memory and time since
	(1) On some systems there is some minimum amount of memory
	    that 'new' can allocate (e.g., 64), so if items are
	    small that a lot of memory is wasted.
	(2) 'new' and 'delete' are designed for items of varying size.
	    If all items has the same size, then an algorithm for
	    adding and deleting can be made more efficient.
	(3) All Block and DBlock functions are inline, so there are
	    no extra function calls.

	Differences between Block and DBlock:
	(1) DBlock allows both adding and deleting items,
	    whereas Block allows only adding items.
	(2) Block has an additional operation of scanning
	    items added so far (in the order in which they were added).
	(3) Block allows to allocate several consecutive
	    items at a time, whereas DBlock can add only a single item.

	Note that no constructors or destructors are called for items.

	Example usage for items of type 'MyType':

	///////////////////////////////////////////////////
	#include "block.h"
	#define BLOCK_SIZE 1024
	typedef struct { int a, b; } MyType;
	MyType *ptr, *array[10000];

	...

	Block<MyType> *block = new Block<MyType>(BLOCK_SIZE);

	// adding items
	for (int i=0; i<sizeof(array); i++)
	{
		ptr = block -> New();
		ptr -> a = ptr -> b = rand();
	}

	// reading items
	for (ptr=block->ScanFirst(); ptr; ptr=block->ScanNext())
	{
		printf("%d %d\n", ptr->a, ptr->b);
	}

	delete block;

	...

	DBlock<MyType> *dblock = new DBlock<MyType>(BLOCK_SIZE);
	
	// adding items
	for (int i=0; i<sizeof(array); i++)
	{
		array[i] = dblock -> New();
	}

	// deleting items
	for (int i=0; i<sizeof(array); i+=2)
	{
		dblock -> Delete(array[i]);
	}

	// adding items
	for (int i=0; i<sizeof(array); i++)
	{
		array[i] = dblock -> New();
	}

	delete dblock;

	///////////////////////////////////////////////////

	Note that DBlock deletes items by marking them as
	empty (i.e., by adding them to the list of free items),
	so that this memory could be used for subsequently
	added items. Thus, at each moment the memory allocated
	is determined by the maximum number of items allocated
	simultaneously at earlier moments. All memory is
	deallocated only when the destructor is called.
*/

#ifndef __BLOCK_H__
#define __BLOCK_H__

#include <stdlib.h>

/***********************************************************************/
/***********************************************************************/
/***********************************************************************/

template <class Type> class Block
{
public:
	/* Constructor. Arguments are the block size and
	   (optionally) the pointer to the function which
	   will be called if allocation failed; the message
	   passed to this function is "Not enough memory!" */
	Block(int size, void (*err_function)(const char *) = NULL) { first = last = NULL; block_size = size; error_function = err_function; }

	/* Destructor. Deallocates all items added so far */
	~Block() { while (first) { block *next = first -> next; delete[] ((char*)first); first = next; } }

	/* Allocates 'num' consecutive items; returns pointer
	   to the first item. 'num' cannot be greater than the
	   block size since items must fit in one block */
	Type *New(int num = 1)
	{
		Type *t;

		if (!last || last->current + num > last->last)
		{
			if (last && last->next) last = last -> next;
			else
			{
				block *next = (block *) new char [sizeof(block) + (block_size-1)*sizeof(Type)];
				if (!next) { if (error_function) (*error_function)("Not enough memory!"); exit(1); }
				if (last) last -> next = next;
				else first = next;
				last = next;
				last -> current = & ( last -> data[0] );
				last -> last = last -> current + block_size;
				last -> next = NULL;
			}
		}

		t = last -> current;
		last -> current += num;
		return t;
	}

	/* Returns the first item (or NULL, if no items were added) */
	Type *ScanFirst()
	{
		for (scan_current_block=first; scan_current_block; scan_current_block = scan_current_block->next)
		{
			scan_current_data = & ( scan_current_block -> data[0] );
			if (scan_current_data < scan_current_block -> current) return scan_current_data ++;
		}
		return NULL;
	}

	/* Returns the next item (or NULL, if all items have been read)
	   Can be called only if previous ScanFirst() or ScanNext()
	   call returned not NULL. */
	Type *ScanNext()
	{
		while (scan_current_data >= scan_current_block -> current)
		{
			scan_current_block = scan_current_block -> next;
			if (!scan_current_block) return NULL;
			scan_current_data = & ( scan_current_block -> data[0] );
		}
		return scan_current_data ++;
	}

	/* Marks all elements as empty */
	void Reset()
	{
		block *b;
		if (!first) return;
		for (b=first; ; b=b->next)
		{
			b -> current = & ( b -> data[0] );
			if (b == last) break;
		}
		last = first;
	}

/***********************************************************************/

private:

	typedef struct block_st
	{
		Type					*current, *last;
		struct block_st			*next;
		Type					data[1];
	} block;

	int		block_size;
	block	*first;
	block	*last;

	block	*scan_current_block;
	Type	*scan_current_data;

	void	(*error_function)(const char *);
};

/***********************************************************************/
/***********************************************************************/
/***********************************************************************/

template <class Type> class DBlock
{
public:
	/* Constructor. Arguments are the block size and
	   (optionally) the pointer to the function which
	   will be called if allocation failed; the message
	   passed to this function is "Not enough memory!" */
	DBlock(int size, void (*err_function)(const char *) = NULL) { first = NULL; first_free = NULL; block_size = size; error_function = err_function; }

	/* Destructor. Deallocates all items added so far */
	~DBlock() { while (first) { block *next = first -> next; delete[] ((char*)first); first = next; } }

	/* Allocates one item */
	Type *New()
	{
		block_item *item;

		if (!first_free)
		{
			block *next = first;
			first = (block *) new char [sizeof(block) + (block_size-1)*sizeof(block_item)];
			if (!first) { if (error_function) (*error_function)("Not enough memory!"); exit(1); }
			first_free = & (first -> data[0] );
			for (item=first_free; item<first_free+block_size-1; item++)
				item -> next_free = item + 1;
			item -> next_free = NULL;
			first -> next = next;
		}

		item = first_free;
		first_free = item -> next_free;
		return (Type *) item;
	}

	/* Deletes an item allocated previously */
	void Delete(Type *t)
	{
		((block_item *) t) -> next_free = first_free;
		first_free = (block_item *) t;
	}

/***********************************************************************/

private:

	typedef union block_item_st
	{
		Type			t;
		block_item_st	*next_free;
	} block_item;

	typedef struct block_st
	{
		struct block_st			*next;
		block_item				data[1];
	} block;

	int			block_size;
	block		*first;
	block_item	*first_free;

	void	(*error_function)(const char *);
};


#endif