summaryrefslogtreecommitdiff
path: root/when_annealed.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2023-06-13 10:30:29 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2023-06-13 10:30:29 +0200
commit37bcaf67a5c37a803675ba2026ca292ff6ef2aba (patch)
treec9e2999c6d8253cf17cd4392ea1098cddd685b73 /when_annealed.tex
parent3772d1e72c25f3d161e04a3ece1e8582379c794c (diff)
downloadEPL_143_61003-37bcaf67a5c37a803675ba2026ca292ff6ef2aba.tar.gz
EPL_143_61003-37bcaf67a5c37a803675ba2026ca292ff6ef2aba.tar.bz2
EPL_143_61003-37bcaf67a5c37a803675ba2026ca292ff6ef2aba.zip
Lots of work.
Diffstat (limited to 'when_annealed.tex')
-rw-r--r--when_annealed.tex11
1 files changed, 6 insertions, 5 deletions
diff --git a/when_annealed.tex b/when_annealed.tex
index 91455a8..b5c9746 100644
--- a/when_annealed.tex
+++ b/when_annealed.tex
@@ -162,11 +162,11 @@ for the action $\mathcal S$ given by
+(2\hat\beta r_\mathrm d-d_\mathrm d)f'(1)
-\Delta x(2\hat\beta r_1-d_1)f'(q_1)
+r_\mathrm d^2f''(1)-\Delta x\,r_1^2f''(q_1) \\
- &+\log\Big(
+ &+\frac1x\log\Big(
\big(r_\mathrm d-\Delta x\,r_1\big)^2+d_\mathrm d\big(1-\Delta x\,q_1\big)-\Delta x\,d_1\big(1-\Delta xq_1\big)
\Big)
-\frac{\Delta x}x\log\Big(
- (r_\mathrm d-r_1)^2+d_\mathrm d\big(1-\Delta xq_1\big)
+ (r_\mathrm d-r_1)^2+(d_\mathrm d-d_1)(1-q_1)
\Big)
\bigg]
\Bigg\}
@@ -224,7 +224,7 @@ bifurcating solution are known at this point, one can search for it by looking
for a zero eigenvalue in the way described above. In the replica symmetric
solution for points describing saddles, this line is
\begin{equation} \label{eq:extremal.line}
- \mu=-\frac1{z_f}\left(-2Ef'f''+\sqrt{-2f''u_f\big(E^2(f''-f')-\log\frac{f''}{f'}z_f\big)}\right)
+ \mu_0=-\frac1{z_f}\left(2Ef'f''+\sqrt{2f''u_f\bigg(\log\frac{f''}{f'}z_f-E^2(f''-f')\bigg)}\right)
\end{equation}
Let $M$ be the matrix of double partial derivatives of $\mathcal S$ with
respect to $q_1$ and $x$. We evaluate $M$ at the replica symmetric saddle point
@@ -263,7 +263,7 @@ The expression inside the inner square root is proportional to
\begin{aligned}
G_f
&=
- 2(f''-f')u_fw_f
+ -2(f''-f')u_fw_f
-2\log^2\frac{f''}{f'}f'^2f''v_f
\\
&\qquad
@@ -288,7 +288,8 @@ between them. Therefore, $G_f>0$ is a necessary condition to see
vanish, and enclosed inside they are found in exponential number. The red
region (blown up in the inset) shows where the annealed complexity gives
the wrong count and a {\oldstylenums1}\textsc{rsb} complexity in necessary.
- The red points show where $\det M=0$. The gray shaded region highlights the
+ The red points show where $\det M=0$. The left point, which is only an
+ upper bound on the transition, coincides with it in this case. The gray shaded region highlights the
minima, which are stationary points with $\mu>\mu_\mathrm m$.
} \label{fig:complexity_35}
\end{figure}