summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--figs/order_plot_1.pdfbin0 -> 11653 bytes
-rw-r--r--figs/order_plot_2.pdfbin0 -> 14270 bytes
-rw-r--r--when_annealed.tex73
3 files changed, 51 insertions, 22 deletions
diff --git a/figs/order_plot_1.pdf b/figs/order_plot_1.pdf
new file mode 100644
index 0000000..dc749d8
--- /dev/null
+++ b/figs/order_plot_1.pdf
Binary files differ
diff --git a/figs/order_plot_2.pdf b/figs/order_plot_2.pdf
new file mode 100644
index 0000000..2c2a9b3
--- /dev/null
+++ b/figs/order_plot_2.pdf
Binary files differ
diff --git a/when_annealed.tex b/when_annealed.tex
index 90dc067..b92e9a5 100644
--- a/when_annealed.tex
+++ b/when_annealed.tex
@@ -25,7 +25,7 @@
\begin{document}
\title{
- When is the average number of saddles typical?
+ When is the average number of saddles in a function typical?
}
\author{Jaron Kent-Dobias}
@@ -150,11 +150,15 @@ When the complexity is calculated using the Kac--Rice formula and a physicists'
tool set, the problem is reduced to the evaluation of an integral by the saddle
point method for large $N$ \cite{Kent-Dobias_2023_How}. An ansatz for
the complexity needs to be made. Here we restrict ourselves to a
-{\oldstylenums1}\textsc{rsb} ansatz. We are guaranteed that
+{\oldstylenums1}\textsc{rsb} ansatz, which is parameterized by two quantities:
+$q_1$ and $x$. They have a geometric interpretation: given a stationary point
+fixed with certain properties, $1-x$ corresponds to the proportion of other
+stationary points with the same properties that are correlated with it,
+and $q_1$ gives the overlap that this correlated population has with it. In the annealed or replica-symmetric case, $x=1$ and all but a vanishing fraction of stationary points are uncorrelated with each other.
+We are guaranteed that
$\Sigma\leq\Sigma_{\oldstylenums1\textsc{rsb}}\leq\Sigma_\mathrm a$, and we
-will discuss later in what settings the {\oldstylenums1}\textsc{rsb}
-complexity is correct. The complexity is given by extremizing an effective
-action,
+will discuss later in what settings the {\oldstylenums1}\textsc{rsb} complexity
+is correct. The complexity is given by extremizing an effective action,
\begin{equation}
\Sigma_{\oldstylenums1\textsc{rsb}}(E,\mu)=\lim_{n\to0}\int dq_1\,dx\,\mathcal S(q_1,x\mid E,\mu)e^{nN\mathcal S(q_1,x\mid E,\mu)}
=\mathop{\mathrm{extremum}}_{q_1,x}\mathcal S(q_1,x\mid E,\mu)
@@ -230,12 +234,16 @@ where we define for brevity (here and elsewhere) the constants
u_f=f(f'+f'')-f'^2
&&
v_f=f'(f''+f''')-f''^2 \\
- w_f=2f''^2+f'(f'''-2f'')
+ w_f=2f''(f''-f')+f'f'''
&&
y_f=f'(f'-f)+f''f
&&
z_f=f(f''-f')+f'^2
\end{align}
+Note that for $f$ to define a sensible covariance, all of its series
+coefficients must be nonnegative. If $f$ has at least two nonzero coefficients
+at second order or higher, all of these constants are positive.
+
Let $M$ be the matrix of double partial derivatives of $\mathcal S$ with
respect to $q_1$ and $x$. We evaluate $M$ at the replica symmetric saddle point
$x=1$ with the additional constraint that $q_1=1$ and along the extremal
@@ -243,14 +251,14 @@ complexity line \eqref{eq:extremal.line}. We determine when a zero eigenvalue
appears, indicated the presence of a bifurcating {\oldstylenums1}\textsc{rsb}
solution, by solving $0=\det M$. We find
\begin{equation}
- \det M=-\left(\frac{\partial^2\mathcal S}{\partial q_1\partial x}\bigg|_{\substack{x=1\\q_1=1}}\right)^2\propto(ay^2+bE^2+2cyE+d)^2
+ \det M=-\left(\frac{\partial^2\mathcal S}{\partial q_1\partial x}\bigg|_{\substack{x=1\\q_1=1}}\right)^2\propto(ay^2+bE^2+2cyE-d)^2
\end{equation}
where $y=-\frac12z_f\mu-f'f''E$ is proportional to the square-root term in \eqref{eq:extremal.line} and
the constants $a$, $b$, $c$, and $d$ are defined below. Changing to $y$ is a
convenient choice because the branch of \eqref{eq:extremal.line} is chosen
by the sign of $y$ (the lower-energy branch we are interested in corresponds
with $y>0$) and the relationship between $y$ and $E$ on the extremal line is
-$g=2h^2y^2+eE^2$, where the constants $e$, $g$, and $h$ are given by
+$g=2hy^2+eE^2$, where the constants $e$, $g$, and $h$ are given by
\begin{equation}
\begin{aligned}
a&=\frac{w_f\big(3y_f^2-4ff'f''(f'-f)\big)-6y_f^2(f''-f')f''}{(u_fz_ff'')^2f'}
@@ -259,7 +267,7 @@ $g=2h^2y^2+eE^2$, where the constants $e$, $g$, and $h$ are given by
\\
c&=\frac{w_f}{f''z_f^2}
\qquad
- d=-\frac{w_f}{f'f''}
+ d=\frac{w_f}{f'f''}
\qquad
e=f''-f'
\qquad
@@ -271,24 +279,20 @@ $g=2h^2y^2+eE^2$, where the constants $e$, $g$, and $h$ are given by
The solutions for $\det M=0$ correspond to energies that satisfy
\begin{equation}
E_{\oldstylenums1\textsc{rsb}}^\pm
- =-\operatorname{sign}[c(de+bg)]\frac{|c|g\mp\sqrt{c^2g^2-(2dh+ag)(de+bg)}}
+ =\operatorname{sign}(bg-de)\frac{-cg\pm\sqrt{c^2g^2+(2dh-ag)(bg-de)}}
{
- \sqrt{2c^2eg+(2bh-ae)(de+bg)\mp2|c|e\sqrt{c^2g^2-(2dh+ag)(de+bg)}}
+ \sqrt{2c^2eg+(2bh-ae)(bg-de)\mp2ce\sqrt{c^2g^2+(2dh-ag)(bg-de)}}
}
\end{equation}
The expression inside the inner square root is proportional to
\begin{equation}
- \begin{aligned}
- G_f
- &=
- -2(f''-f')u_fw_f
- -2\log^2\frac{f''}{f'}f'^2f''v_f
- \\
- &\qquad
- -f'\log\frac{f''}{f'}\Big[
- 4(f'-2f)(f''-f')f''^2-\big(-3(f'-f)f'^2+f'(f'-2f)f''+3ff''^2\big)f'''
- \Big]
- \end{aligned}
+ G_f
+ =
+ f'\log\frac{f''}{f'}\big[
+ 3y_f(f''-f')f'''-2(f'-2f)f''w_f
+ \big]
+ -2(f''-f')u_fw_f
+ -2\log^2\frac{f''}{f'}f'^2f''v_f
\end{equation}
If $G_f>0$, then there are two points along the extremal complexity line where
a solution bifurcates, and a new line of {\oldstylenums1}\textsc{rsb} solutions
@@ -343,6 +347,31 @@ between them. Therefore, $G_f>0$ is a necessary condition to see
}
\end{figure}
+\begin{figure}
+ \centering
+ \includegraphics{figs/order_plot_1.pdf}\\
+ \vspace{-1em}
+ \includegraphics{figs/order_plot_2.pdf}
+
+ \caption{
+ Examples of $3+14$ models where the solution
+ $E_{\oldstylenums1\textsc{rsb}}^-$ does and doesn't define the lower limit
+ of energies where \textsc{rsb} saddles are found. In both plots the red dot
+ shows $E_{\oldstylenums1\textsc{rsb}}^-$, while the solid red lines shows
+ the transition boundary with the \textsc{rs} complexity. The dashed black
+ line shows the \textsc{rs} zero complexity line, while the solid black line
+ shows the {\oldstylenums1}\textsc{rsb} zero complexity line. \textbf{Top:}
+ $\lambda=0.67$. Here the end of the transition line that begins at
+ $E_{\oldstylenums1\textsc{rsb}}^+$ does not match
+ $E_{\oldstylenums1\textsc{rsb}}^-$ but terminates at higher energies.
+ $E_{\oldstylenums1\textsc{rsb}}^-$ still corresponds with the lower bound.
+ \textbf{Bottom:} $\lambda=0.69$. Here the end of the transition line that
+ begins at $E_{\oldstylenums1\textsc{rsb}}^+$ terminates at lower energies
+ than $E_{\oldstylenums1\textsc{rsb}}^-$, and therefore its terminus defines
+ the lower bound.
+ }
+\end{figure}
+
\begin{equation}
\mu
=-\frac{(f_1'+f_0'')u_f}{(2f_1-f_1')f_1'f_0''^{1/2}}