diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-07-14 13:36:02 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-07-14 13:36:02 +0200 |
commit | c476c0a89fcc26ee98a394d7aa50d6ebd8691a78 (patch) | |
tree | d5d2d7016ab93c90732dc2cd6238409305fa6716 | |
parent | 73a6f377a5956a2843cfbc3b983bfac762fd958f (diff) | |
download | PRE_107_064111-c476c0a89fcc26ee98a394d7aa50d6ebd8691a78.tar.gz PRE_107_064111-c476c0a89fcc26ee98a394d7aa50d6ebd8691a78.tar.bz2 PRE_107_064111-c476c0a89fcc26ee98a394d7aa50d6ebd8691a78.zip |
Typo
-rw-r--r-- | frsb_kac-rice.tex | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex index 6719d05..fc1666b 100644 --- a/frsb_kac-rice.tex +++ b/frsb_kac-rice.tex @@ -1452,7 +1452,7 @@ saddles at this transition point. elements. The so-called $k$RSB ansatz has $k+2$ different values in each row. If $A$ is an $n\times n$ hierarchical matrix, then $n-x_1$ of those entries are $a_0$, $x_1-x_2$ of those entries are $a_1$, and so on until - $x_a-1$ entries of $a_k$, and one entry of $a_d$, corresponding to the + $x_k-1$ entries of $a_k$, and one entry of $a_d$, corresponding to the diagonal. Given such a matrix, there are standard ways of producing the sum and determinant that appear in the free energy. These formulas are, for an arbitrary $k$RSB matrix $A$ with $a_d$ on its diagonal (recall $q_d=1$), |