summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2022-07-14 13:36:02 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2022-07-14 13:36:02 +0200
commitc476c0a89fcc26ee98a394d7aa50d6ebd8691a78 (patch)
treed5d2d7016ab93c90732dc2cd6238409305fa6716
parent73a6f377a5956a2843cfbc3b983bfac762fd958f (diff)
downloadPRE_107_064111-c476c0a89fcc26ee98a394d7aa50d6ebd8691a78.tar.gz
PRE_107_064111-c476c0a89fcc26ee98a394d7aa50d6ebd8691a78.tar.bz2
PRE_107_064111-c476c0a89fcc26ee98a394d7aa50d6ebd8691a78.zip
Typo
-rw-r--r--frsb_kac-rice.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
index 6719d05..fc1666b 100644
--- a/frsb_kac-rice.tex
+++ b/frsb_kac-rice.tex
@@ -1452,7 +1452,7 @@ saddles at this transition point.
elements. The so-called $k$RSB ansatz has $k+2$ different values in each
row. If $A$ is an $n\times n$ hierarchical matrix, then $n-x_1$ of those
entries are $a_0$, $x_1-x_2$ of those entries are $a_1$, and so on until
- $x_a-1$ entries of $a_k$, and one entry of $a_d$, corresponding to the
+ $x_k-1$ entries of $a_k$, and one entry of $a_d$, corresponding to the
diagonal. Given such a matrix, there are standard ways of producing the sum
and determinant that appear in the free energy. These formulas are, for an
arbitrary $k$RSB matrix $A$ with $a_d$ on its diagonal (recall $q_d=1$),