diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-06-05 15:23:05 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-06-05 15:23:05 +0200 |
commit | d66cb38b3526c81d8c8327b8e98fe0acba27a261 (patch) | |
tree | d912649cd7aed1d4be497069e163c8d502506f41 | |
parent | de7c6f1ffe89b010bb6f6641a2b2074fc8344b74 (diff) | |
parent | 8cf1d620d86f738f2b209ea3e9694b96338335e1 (diff) | |
download | PRE_107_064111-d66cb38b3526c81d8c8327b8e98fe0acba27a261.tar.gz PRE_107_064111-d66cb38b3526c81d8c8327b8e98fe0acba27a261.tar.bz2 PRE_107_064111-d66cb38b3526c81d8c8327b8e98fe0acba27a261.zip |
Merge branch 'master' of https://git.overleaf.com/629a30c097d0b9f4b4f7a69d
-rw-r--r-- | frsb_kac-rice.tex | 20 |
1 files changed, 12 insertions, 8 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex index 1a33581..2f1a55e 100644 --- a/frsb_kac-rice.tex +++ b/frsb_kac-rice.tex @@ -431,7 +431,16 @@ The second equation implies \subsection{Motivation} -The reader who is happy with the ansatz may skip this section. +We shall make the following ansatz +to putting: +\begin{eqnarray} +Q_{ab}&=& {\mbox{ a Parisi matrix}}\nonumber\\ +R_{ab}&=&R_d \delta_{ab}&\nonumber\\ +D_{ab}&=& D_d \delta_{ab}\label{ansatz} +\end{eqnarray} +This ansatz closes under the operations that are involved in the replicated action. +The reader who is happy with the ansatz may skip the rest of this section. + We may encode the original variables in a superspace variable: \begin{equation} \phi_a(1)= s_a + \bar\eta_a\theta_1+\bar\theta_1\eta_a + \hat s_a \bar \theta_1 \theta_1 @@ -466,13 +475,8 @@ The odd and even fermion numbers decouple, so we can neglect all odd terms in $\ The variables $\bar \theta \theta$ and $\bar \theta ' \theta'$ play the role of `times' in a superspace treatment. We have a long experience of making an ansatz for replicated quantum problems, which naturally involve a (Matsubara) time. The analogy strongly -suggests that only the diagonal ${\bf Q}_{aa}$ depend on the $\theta$'s. This boils down -to putting: -\begin{eqnarray} -Q_{ab}&=& {\mbox{ a Parisi matrix}}\nonumber\\ -R_{ab}&=R_d \delta_{ab}&\nonumber\\ -D_{ab}&=& D_d \delta_{ab} -\end{eqnarray} +suggests that only the diagonal ${\bf Q}_{aa}$ depend on the $\theta$'s. This boils down the ansatz \ref{ansatz} + Not surprisingly, this ansatz closes, as we shall see. That it closes under Hadamard products is simple. \begin{equation} |