summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-05 15:23:05 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-05 15:23:05 +0200
commitd66cb38b3526c81d8c8327b8e98fe0acba27a261 (patch)
treed912649cd7aed1d4be497069e163c8d502506f41
parentde7c6f1ffe89b010bb6f6641a2b2074fc8344b74 (diff)
parent8cf1d620d86f738f2b209ea3e9694b96338335e1 (diff)
downloadPRE_107_064111-d66cb38b3526c81d8c8327b8e98fe0acba27a261.tar.gz
PRE_107_064111-d66cb38b3526c81d8c8327b8e98fe0acba27a261.tar.bz2
PRE_107_064111-d66cb38b3526c81d8c8327b8e98fe0acba27a261.zip
Merge branch 'master' of https://git.overleaf.com/629a30c097d0b9f4b4f7a69d
-rw-r--r--frsb_kac-rice.tex20
1 files changed, 12 insertions, 8 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
index 1a33581..2f1a55e 100644
--- a/frsb_kac-rice.tex
+++ b/frsb_kac-rice.tex
@@ -431,7 +431,16 @@ The second equation implies
\subsection{Motivation}
-The reader who is happy with the ansatz may skip this section.
+We shall make the following ansatz
+to putting:
+\begin{eqnarray}
+Q_{ab}&=& {\mbox{ a Parisi matrix}}\nonumber\\
+R_{ab}&=&R_d \delta_{ab}&\nonumber\\
+D_{ab}&=& D_d \delta_{ab}\label{ansatz}
+\end{eqnarray}
+This ansatz closes under the operations that are involved in the replicated action.
+The reader who is happy with the ansatz may skip the rest of this section.
+
We may encode the original variables in a superspace variable:
\begin{equation}
\phi_a(1)= s_a + \bar\eta_a\theta_1+\bar\theta_1\eta_a + \hat s_a \bar \theta_1 \theta_1
@@ -466,13 +475,8 @@ The odd and even fermion numbers decouple, so we can neglect all odd terms in $\
The variables $\bar \theta \theta$ and $\bar \theta ' \theta'$ play
the role of `times' in a superspace treatment. We have a long experience of
making an ansatz for replicated quantum problems, which naturally involve a (Matsubara) time. The analogy strongly
-suggests that only the diagonal ${\bf Q}_{aa}$ depend on the $\theta$'s. This boils down
-to putting:
-\begin{eqnarray}
-Q_{ab}&=& {\mbox{ a Parisi matrix}}\nonumber\\
-R_{ab}&=R_d \delta_{ab}&\nonumber\\
-D_{ab}&=& D_d \delta_{ab}
-\end{eqnarray}
+suggests that only the diagonal ${\bf Q}_{aa}$ depend on the $\theta$'s. This boils down the ansatz \ref{ansatz}
+
Not surprisingly, this ansatz closes, as we shall see. That it closes under Hadamard products is simple.
\begin{equation}