summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-17 11:17:44 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-17 11:17:44 +0200
commitf670ae696e496ecf687cd5555b127e53b00fd912 (patch)
treec60272948bc12ee7a7375c6b25a7c01159178210
parent5d90f99c0ef61a31c16341e2b97f53981ce91214 (diff)
downloadPRE_107_064111-f670ae696e496ecf687cd5555b127e53b00fd912.tar.gz
PRE_107_064111-f670ae696e496ecf687cd5555b127e53b00fd912.tar.bz2
PRE_107_064111-f670ae696e496ecf687cd5555b127e53b00fd912.zip
Lots of confusion.
-rw-r--r--frsb_kac_new.tex24
1 files changed, 24 insertions, 0 deletions
diff --git a/frsb_kac_new.tex b/frsb_kac_new.tex
index c1f0bd8..e1ac91d 100644
--- a/frsb_kac_new.tex
+++ b/frsb_kac_new.tex
@@ -419,6 +419,30 @@ Diagonal ansatz requires that
0=-\mu I+\hat\beta f'(Q)+R_df''(1)I+R_dQ^{-1}f'(Q)
\end{equation}
or $\hat\beta f'(Q_{ab})=-R_d[Q^{-1}f'(Q)]_{ab}$ for $a\neq b$.
+We also have from the first (before the diagonal ansatz) $Df'(Q)=I-RQ^{-1}Rf'(Q)$. Inserting the diagonal, we get $Q^{-1}f'(Q)=\frac1{R_d^2}(I-D_df'(Q))$, and
+\begin{equation}
+ 0=-\mu I+\hat\beta f'(Q)+R_df''(1)I+\frac1{R_d}(I-D_df'(Q))
+ =(R_df''(1)+R_d^{-1}-\mu)I+(\hat\beta-D_d/R_d)f'(Q)
+\end{equation}
+
+\begin{equation}
+ 0=(\hat\beta Q+R) f'(Q)+(R\odot f''(Q)-\mu I)Q
+\end{equation}
+
+\begin{equation}
+ \begin{aligned}
+ &\Sigma(\epsilon,\mu)
+ =\frac12+\mathcal D(\mu)+\hat\beta\epsilon+\\
+ &\lim_{n\to0}\frac1n\left(
+ -\frac12\mu\sum_a^nR_{aa}
+ +\frac12\sum_{ab}\left[
+ \hat\beta^2f(Q_{ab})+\hat\beta R_{ab}f'(Q_{ab})
+ \right]
+ +\frac12\log\det(f'(Q)^{-1}Q)
+ \right)
+ \end{aligned}
+\end{equation}
+
\subsection{Solution}