diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-06-17 11:17:44 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-06-17 11:17:44 +0200 |
commit | f670ae696e496ecf687cd5555b127e53b00fd912 (patch) | |
tree | c60272948bc12ee7a7375c6b25a7c01159178210 | |
parent | 5d90f99c0ef61a31c16341e2b97f53981ce91214 (diff) | |
download | PRE_107_064111-f670ae696e496ecf687cd5555b127e53b00fd912.tar.gz PRE_107_064111-f670ae696e496ecf687cd5555b127e53b00fd912.tar.bz2 PRE_107_064111-f670ae696e496ecf687cd5555b127e53b00fd912.zip |
Lots of confusion.
-rw-r--r-- | frsb_kac_new.tex | 24 |
1 files changed, 24 insertions, 0 deletions
diff --git a/frsb_kac_new.tex b/frsb_kac_new.tex index c1f0bd8..e1ac91d 100644 --- a/frsb_kac_new.tex +++ b/frsb_kac_new.tex @@ -419,6 +419,30 @@ Diagonal ansatz requires that 0=-\mu I+\hat\beta f'(Q)+R_df''(1)I+R_dQ^{-1}f'(Q) \end{equation} or $\hat\beta f'(Q_{ab})=-R_d[Q^{-1}f'(Q)]_{ab}$ for $a\neq b$. +We also have from the first (before the diagonal ansatz) $Df'(Q)=I-RQ^{-1}Rf'(Q)$. Inserting the diagonal, we get $Q^{-1}f'(Q)=\frac1{R_d^2}(I-D_df'(Q))$, and +\begin{equation} + 0=-\mu I+\hat\beta f'(Q)+R_df''(1)I+\frac1{R_d}(I-D_df'(Q)) + =(R_df''(1)+R_d^{-1}-\mu)I+(\hat\beta-D_d/R_d)f'(Q) +\end{equation} + +\begin{equation} + 0=(\hat\beta Q+R) f'(Q)+(R\odot f''(Q)-\mu I)Q +\end{equation} + +\begin{equation} + \begin{aligned} + &\Sigma(\epsilon,\mu) + =\frac12+\mathcal D(\mu)+\hat\beta\epsilon+\\ + &\lim_{n\to0}\frac1n\left( + -\frac12\mu\sum_a^nR_{aa} + +\frac12\sum_{ab}\left[ + \hat\beta^2f(Q_{ab})+\hat\beta R_{ab}f'(Q_{ab}) + \right] + +\frac12\log\det(f'(Q)^{-1}Q) + \right) + \end{aligned} +\end{equation} + \subsection{Solution} |