summaryrefslogtreecommitdiff
path: root/frsb_kac-rice.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-05 00:04:55 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-05 00:04:55 +0200
commit2163176d888323c18805ad8a5d1766fe3df556ac (patch)
tree7cf15410ace302eedaa9981899603629a4697370 /frsb_kac-rice.tex
parent8fa28ca67e971c653e720db69d0d992c74252dbd (diff)
downloadPRE_107_064111-2163176d888323c18805ad8a5d1766fe3df556ac.tar.gz
PRE_107_064111-2163176d888323c18805ad8a5d1766fe3df556ac.tar.bz2
PRE_107_064111-2163176d888323c18805ad8a5d1766fe3df556ac.zip
Cleaned up derivation equations.
Diffstat (limited to 'frsb_kac-rice.tex')
-rw-r--r--frsb_kac-rice.tex70
1 files changed, 33 insertions, 37 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
index 8881f10..a8f7188 100644
--- a/frsb_kac-rice.tex
+++ b/frsb_kac-rice.tex
@@ -260,52 +260,48 @@ points are minima whose sloppiest eigenvalue is $\mu-\mu_m$. Finally,
when $\mu=\mu_m$, the critical points are marginal minima.
\begin{equation}
+ \prod_a^n\delta(N\epsilon-H(s_a))\delta(\partial H(s_a)-\mu s_a)
+ =\int \frac{\hat\epsilon}{2\pi}\prod_a^n\frac{d\hat s_a}{2\pi}
+ e^{\hat\epsilon(N\epsilon-H(s_a))+\hat s_a\cdot(\partial H(s_a)-\mu s_a)}
+\end{equation}
+
+\begin{equation}
\begin{aligned}
- \overline{\Sigma(\epsilon, \mu)}
- &=\frac1N\lim_{n\to0}\frac\partial{\partial n}
- e^{nN\mathcal D(\mu)}
- \int\left(\prod_a^nds_a\,d\hat s_a\right)\,d\hat\epsilon\,e^{nN\hat\epsilon\epsilon-\mu\sum_a^n\hat s_as_a}\overline{
- \exp\left[
- \sum_a^n
- (\hat s_a\partial_a-\hat\epsilon)H(s_a)
- \right]
+ \overline{
+ \exp\left\{
+ \sum_a^n(\hat s_a\cdot\partial_a-\hat\epsilon)H(s_a)
+ \right\}
}
- \\
- &=\frac1N\lim_{n\to0}\frac\partial{\partial n}
- e^{nN\mathcal D(\mu)}
- \int\left(\prod_a^nds_a\,d\hat s_a\right)\,d\hat\epsilon\,e^{nN\hat\epsilon\epsilon-\mu\sum_a^n\hat s_as_a}
- \exp\left[
+ &=\exp\left\{
\frac12\sum_{ab}^n
- (\hat s_a\partial_a-\hat\epsilon)(\hat s_b\partial_b-\hat\epsilon)\overline{H(s_a)H(s_b)}
- \right] \\
- &=\frac1N\lim_{n\to0}\frac\partial{\partial n}
- e^{nN\mathcal D(\mu)}
- \int\left(\prod_a^nds_a\,d\hat s_a\right)\,d\hat\epsilon\,e^{nN\hat\epsilon\epsilon-\mu\sum_a^n\hat s_as_a}
- \exp\left[
+ (\hat s_a\cdot\partial_a-\hat\epsilon)
+ (\hat s_b\cdot\partial_b-\hat\epsilon)
+ \overline{H(s_a)H(s_b)}
+ \right\} \\
+ &=\exp\left\{
\frac N2\sum_{ab}^n
- (\hat s_a\partial_a-\hat\epsilon)(\hat s_b\partial_b-\hat\epsilon)f(s_as_b/N)
- \right] \\
- &=\frac1N\lim_{n\to0}\frac\partial{\partial n}
- e^{nN\mathcal D(\mu)}
- \int\left(\prod_a^nds_a\,d\hat s_a\right)\,d\hat\epsilon\,e^{nN\hat\epsilon\epsilon-\mu\sum_a^n\hat s_as_a}
- \exp\left[
+ (\hat s_a\cdot\partial_a-\hat\epsilon)
+ (\hat s_b\cdot\partial_b-\hat\epsilon)
+ f\left(\frac{s_a\cdot s_b}N\right)
+ \right\} \\
+ &\hspace{-13em}\exp\left\{
\frac N2\sum_{ab}^n
- (
- \hat\epsilon^2f(s_as_b/N)-2\hat\epsilon\frac{\hat s_as_b}Nf'(s_as_b/N)+\frac{\hat s_a\hat s_b}Nf'(s_as_b/N)
- +\left(\frac{\hat s_as_b}N\right)^2f''(s_as_b/N)
- )
- \right]
+ \left[
+ \hat\epsilon^2f\left(\frac{s_a\cdot s_b}N\right)
+ -2\hat\epsilon\frac{\hat s_a\cdot s_b}Nf'\left(\frac{s_a\cdot s_b}N\right)
+ +\frac{\hat s_a\cdot \hat s_b}Nf'\left(\frac{s_a\cdot s_b}N\right)
+ +\left(\frac{\hat s_a\cdot s_b}N\right)^2f''\left(\frac{s_a\cdot s_b}N\right)
+ \right]
+ \right\}
\end{aligned}
\end{equation}
The parameters:
-\begin{equation}
- \begin{aligned}
- Q_{ab}=\frac1Ns_a\cdot s_b \\
- R_{ab}=\frac1N\hat s_a\cdot s_b \\
- D_{ab}=\frac1N\hat s_a\cdot\hat s_b
- \end{aligned}
-\end{equation}
+\begin{align}
+ Q_{ab}=\frac1Ns_a\cdot s_b &&
+ R_{ab}=\frac1N\hat s_a\cdot s_b &&
+ D_{ab}=\frac1N\hat s_a\cdot\hat s_b
+\end{align}
\begin{equation}
S