summaryrefslogtreecommitdiff
path: root/frsb_kac-rice.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2022-07-13 11:00:36 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2022-07-13 11:00:36 +0200
commit7d5fcfacf30df93837bb70c96f8c453dacdd1126 (patch)
tree8827d81082e11c187469394f10155145d9199e6f /frsb_kac-rice.tex
parentf31a46c260294a51d9215b5c66c828453ac1bfd6 (diff)
downloadPRE_107_064111-7d5fcfacf30df93837bb70c96f8c453dacdd1126.tar.gz
PRE_107_064111-7d5fcfacf30df93837bb70c96f8c453dacdd1126.tar.bz2
PRE_107_064111-7d5fcfacf30df93837bb70c96f8c453dacdd1126.zip
Split off hierarchical matrix algebra to an appendix.
Diffstat (limited to 'frsb_kac-rice.tex')
-rw-r--r--frsb_kac-rice.tex155
1 files changed, 92 insertions, 63 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
index 11d5822..7c09dca 100644
--- a/frsb_kac-rice.tex
+++ b/frsb_kac-rice.tex
@@ -184,38 +184,14 @@ The free energy, averaged over disorder, is
Once $n$ replicas are introduced to treat the logarithm, the fields $\mathbf
s_a$ can be replaced with the new $n\times n$ matrix field $Q_{ab}\equiv(\mathbf
s_a\cdot\mathbf s_b)/N$. This yields for the free energy
-\begin{equation}
+\begin{equation} \label{eq:eq.free.energy}
\beta F=-1-\ln2\pi-\frac12\lim_{n\to0}\frac1n\left(\beta^2\sum_{ab}^nf(Q_{ab})+\ln\det Q\right)
\end{equation}
which must be evaluated at the $Q$ which maximizes this expression and whose
diagonal is one. The solution is generally a hierarchical matrix \emph{à la}
-Parisi. Each row of the matrix is the same up to permutation of their elements.
-The so-called $k$RSB solution has $k+2$ different values in each row: $n-x_1$
-of those entries are $q_0$, $x_1-x_2$ of those entries are $q_1$, and so on
-until $x_k-1$ entries of $q_k$, and of course one entry of $1$ (the diagonal).
-Given such a matrix, there are standard ways of producing the sum and
-determinant that appear in the free energy. These formulas are, for an
-arbitrary $k$RSB matrix $A$ with $a_d$ on its diagonal (recall $q_d=1$),
-\begin{equation} \label{eq:replica.sum}
- \lim_{n\to0}\frac1n\sum_{ab}^nA_{ab}
- =a_d-\sum_{i=0}^k(x_{i+1}-x_i)a_i
-\end{equation}
-\begin{equation} \label{eq:replica.logdet}
- \begin{aligned}
- \lim_{n\to0}\frac1n\ln\det A
- &=
- \frac{a_0}{a_d-\sum_{i=0}^k(x_{i+1}-x_i)a_i}
- +\frac1{x_1}\log\left[
- a_d-\sum_{i=0}^{k}(x_{i+1}-x_i)a_i
- \right]\\
- &\hspace{10pc}-\sum_{j=1}^k(x_j^{-1}-x_{j+1}^{-1})\log\left[
- a_d-\sum_{i=j}^{k}(x_{i+1}-x_i)a_i-x_ja_j
- \right]
- \end{aligned}
-\end{equation}
-where $x_0=0$ and $x_{k+1}=1$. Once these are substituted into the free energy,
-optimizing the anstaz is equivalent to maximizing $F$ with respect to the
-$q_0,\ldots,q_k$ and $x_1,\ldots,x_k$.
+Parisi. The properties of these matrices is reviewed in \S\ref{sec:dict},
+including how to write down \eqref{eq:eq.free.energy} in terms of their
+parameters.
The free energy can also be written in a functional form, which is necessary
for working with the solution in the limit $k\to\infty$, the so-called full
@@ -561,19 +537,13 @@ matrix products and Hadamard products. In particular, the determinant of the blo
\ln\det\begin{bmatrix}C&iR\\iR&D\end{bmatrix}=\ln\det(CD+R^2)
\end{equation}
This is straightforward to write down at $k$RSB, since the product and sum of
-the hierarchical matrices is still a hierarchical matrix. Recall the
-standard formulas for the product $C=AB$ of two hierarchical matrices:
-\begin{align} \label{eq:replica.prod}
- c_d&=a_db_d-\sum_{j=0}^k(x_{j+1}-x_j)a_jb_j \\
- c_i&=b_da_i+a_db_i-\sum_{j=0}^{i-1}(x_{j+1}-x_j)a_jb_j+(2x_{i+1}-x_i)a_ib_i
- -\sum_{j=i+1}^k(x_{j+1}-x_j)(a_ib_j+a_jb_i)
-\end{align}
-and for the sum $C=A+B$ of two hierarchical matrices: $c_d=a_d+b_d$ and
-$c_i=a_i+b_i$. Using these, one can write down the hierarchical matrix
-$CD+R^2$, and then compute the $\ln\det$ using the previous formula
-\eqref{eq:replica.logdet}.
+the hierarchical matrices is still a hierarchical matrix. The algebra of
+hierarchical matrices is reviewed in \S\ref{sec:dict}. Using the product formula
+\eqref{eq:replica.prod}, one can write down the hierarchical matrix $CD+R^2$,
+and then compute the $\ln\det$ using the formula \eqref{eq:replica.logdet}.
-The extremal conditions are given by differentiating the complexity with respect to its parameters, yielding
+The extremal conditions are given by differentiating the complexity with
+respect to its parameters, yielding
\begin{align}
0&=\frac{\partial\Sigma}{\partial\hat\mu}
=\frac12(c_d-1) \\
@@ -758,7 +728,8 @@ each of its rows, with
&&
D\;\leftrightarrow\;[d_d, d(x)]
\end{align}
-The complexity becomes
+The algebra of hierarchical matrices under this continuous parameterization is
+review in \S\ref{sec:dict}. The complexity becomes
\begin{equation}
\begin{aligned}
\Sigma(E,\mu^*)
@@ -770,34 +741,18 @@ The complexity becomes
+\frac12\lim_{n\to0}\frac1n\ln\det(CD+R^2)
\end{aligned}
\end{equation}
-The determinant takes more work to treat.
-Define for any function of $x$
-\begin{equation}
- \langle a\rangle=\int_0^1dx\,a(x)
-\end{equation}
-In general, the product of hierarchical matrices gives
-\begin{align}
- (a\ast b)_d&=a_db_d-\langle ab\rangle \\
- (a\ast b)(x)&=(b_d-\langle b\rangle)a(x)+(a_d-\langle a\rangle)b(x)
- -\int_0^xdy\,\big(
- a(x)-a(y)
- \big)\big(
- b(x)-b(y)
- \big)
-\end{align}
-and the $\ln\det$ becomes, for the hierarchical matrix $A=CD+R^2$,
-\begin{equation} \label{eq:replica.det.cont}
- \lim_{n\to0}\frac1n\ln\det A
- =\ln(a_d-\langle a\rangle)
- +\frac{a(0)}{a_d-\langle a\rangle}
- -\int_0^1\frac{dx}{x^2}\ln\left(\frac{a_d-\langle a\rangle-xa(x)+\int_0^xdy\,a(y)}{a_d-\langle a\rangle}\right)
-\end{equation}
+The formula for the determinant is complicated, and can be found by using the
+product formula \eqref{eq:cont.replica.prod} to write $CD$ and $R^2$, summing
+them, and finally using the $\ln\det$ formula \eqref{eq:replica.det.cont}.
The saddle point equations take the form
\begin{align}
0&=\hat\mu c(x)+[(\hat\beta^2f'(c)+(2\hat\beta r-d)f''(c)+r^2f'''(c))\ast c](x)+(f'(c)\ast d)(x) \label{eq:extremum.c} \\
0&=-\mu^* c(x)+[(\hat\beta f'(c)+rf''(c))\ast c](x)+(f'(c)\ast r)(x) \label{eq:extremum.r} \\
0&=c(x)-\big(f'(c)\ast(c\ast d+r\ast r)\big)(x) \label{eq:extremum.d}
\end{align}
+where $(a\ast b)(x)$ denotes the functional parameterization of the diagonal of
+the product of hierarchical matrices $AB$, defined in
+\eqref{eq:cont.replica.prod}.
\subsection{Supersymmetric complexity}
@@ -1484,6 +1439,80 @@ dominant saddles transition to a RSB complexity, we speculate that
$E_\mathrm{alg}$ may be related to the statistics of minima connected to the
saddles at this transition point.
+\begin{appendix}
+
+ \section{Hierarchical matrix dictionary}
+ \label{sec:dict}
+
+ Each row of a hierarchical matrix is the same up to permutation of their
+ elements. The so-called $k$RSB ansatz has $k+2$ different values in each
+ row. If $A$ is an $n\times n$ hierarchical matrix, then $n-x_1$ of those
+ entries are $a_0$, $x_1-x_2$ of those entries are $a_1$, and so on until
+ $x_a-1$ entries of $a_k$, and one entry of $a_d$, corresponding to the
+ diagonal. Given such a matrix, there are standard ways of producing the sum
+ and determinant that appear in the free energy. These formulas are, for an
+ arbitrary $k$RSB matrix $A$ with $a_d$ on its diagonal (recall $q_d=1$),
+ \begin{equation} \label{eq:replica.sum}
+ \lim_{n\to0}\frac1n\sum_{ab}^nA_{ab}
+ =a_d-\sum_{i=0}^k(x_{i+1}-x_i)a_i
+ \end{equation}
+ \begin{equation} \label{eq:replica.logdet}
+ \begin{aligned}
+ \lim_{n\to0}\frac1n\ln\det A
+ &=
+ \frac{a_0}{a_d-\sum_{i=0}^k(x_{i+1}-x_i)a_i}
+ +\frac1{x_1}\log\left[
+ a_d-\sum_{i=0}^{k}(x_{i+1}-x_i)a_i
+ \right]\\
+ &\hspace{10pc}-\sum_{j=1}^k(x_j^{-1}-x_{j+1}^{-1})\log\left[
+ a_d-\sum_{i=j}^{k}(x_{i+1}-x_i)a_i-x_ja_j
+ \right]
+ \end{aligned}
+ \end{equation}
+ where $x_0=0$ and $x_{k+1}=1$. The sum of two hierarchical matrices results
+ in the sum of each of their elements: $(a+b)_d=a_d+b_d$ and
+ $(a+b)_i=a_i+b_i$. The product $A\ast B$ of two hierarchical matrices $A$
+ and $B$ is given by
+ \begin{align} \label{eq:replica.prod}
+ (a\ast b)_d&=a_db_d-\sum_{j=0}^k(x_{j+1}-x_j)a_jb_j \\
+ (a\ast b)_i&=b_da_i+a_db_i-\sum_{j=0}^{i-1}(x_{j+1}-x_j)a_jb_j+(2x_{i+1}-x_i)a_ib_i
+ -\sum_{j=i+1}^k(x_{j+1}-x_j)(a_ib_j+a_jb_i)
+ \end{align}
+
+ There is a canonical mapping between the parameterization of a hierarchical
+ matrix described above and a functional parameterization that is particularly
+ convenient in the twin limit $n\to0$ and $k\to\infty$
+ \cite{Parisi_1980_Magnetic, Mezard_1991_Replica}. The distribution of
+ diagonal elements of a matrix $A$ is parameterized by a continuous function
+ $a(x)$ on the interval $[0,1]$, while its diagonal is still called $a_d$.
+ Define for any function $g$ the average
+ \begin{equation}
+ \langle g\rangle=\int_0^1dx\,g(x)
+ \end{equation}
+ The sum of two hierarchical matrices so parameterized results in the sum of
+ these functions. The product $AB$ of hierarchical matrices $A$ and $B$ gives
+ \begin{align} \label{eq:cont.replica.prod}
+ (a\ast b)_d&=a_db_d-\langle ab\rangle \\
+ (a\ast b)(x)&=(b_d-\langle b\rangle)a(x)+(a_d-\langle a\rangle)b(x)
+ -\int_0^xdy\,\big(
+ a(x)-a(y)
+ \big)\big(
+ b(x)-b(y)
+ \big)
+ \end{align}
+ The sum over all elements of a hierarchical matrix $A$ gives
+ \begin{equation}
+ \lim_{n\to0}\frac1n\sum_{ab}A_{ab}=a_d-\langle a\rangle
+ \end{equation}
+ The $\ln\det=\operatorname{Tr}\ln$ becomes
+ \begin{equation} \label{eq:replica.det.cont}
+ \lim_{n\to0}\frac1n\ln\det A
+ =\ln(a_d-\langle a\rangle)
+ +\frac{a(0)}{a_d-\langle a\rangle}
+ -\int_0^1\frac{dx}{x^2}\ln\left(\frac{a_d-\langle a\rangle-xa(x)+\int_0^xdy\,a(y)}{a_d-\langle a\rangle}\right)
+ \end{equation}
+\end{appendix}
+
\paragraph{Acknowledgements}
The authors would like to thank Valentina Ros for helpful discussions.