summaryrefslogtreecommitdiff
path: root/frsb_kac_new.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-08 10:33:06 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-08 10:33:06 +0200
commit5d0403945ad6bdeb111b1d7a25c03858e1443f4f (patch)
treecea67429a875e673ca9ed8e232166589158d99de /frsb_kac_new.tex
parent2a57d9283f23e211ce8e00e32869ba54b0296a08 (diff)
downloadPRE_107_064111-5d0403945ad6bdeb111b1d7a25c03858e1443f4f.tar.gz
PRE_107_064111-5d0403945ad6bdeb111b1d7a25c03858e1443f4f.tar.bz2
PRE_107_064111-5d0403945ad6bdeb111b1d7a25c03858e1443f4f.zip
Removed unnecessary step in derivation of zero temperature free energy.
Diffstat (limited to 'frsb_kac_new.tex')
-rw-r--r--frsb_kac_new.tex20
1 files changed, 4 insertions, 16 deletions
diff --git a/frsb_kac_new.tex b/frsb_kac_new.tex
index e1c5768..beeab96 100644
--- a/frsb_kac_new.tex
+++ b/frsb_kac_new.tex
@@ -143,22 +143,10 @@ $q_0=0$
\right]
\right)
\end{align*}
-The zero temperature limit is most easily obtained by putting $x_i=\tilde x_ix_k$ and $x_k=y/\beta$, $q_k=1-z/\beta$
-\begin{align*}
- \beta F=
- -\frac12\log S_\infty-
- \frac12\left(\beta^2f(1)+\beta^2(y\beta^{-1}-1)f(1-z\beta^{-1})+y\beta\sum_{i=0}^{k-1}(\tilde x_i-\tilde x_{i+1})f(q_i)\right. \\
- +\frac\beta{\tilde x_1 y}\log\left[
- y\sum_{i=1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z-yz/\beta
- \right]\\
- +\sum_{j=1}^{k-1}\frac\beta y(\tilde x_{j+1}^{-1}-\tilde x_j^{-1})\log\left[
- y\sum_{i=j+1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z-yz/\beta-y\tilde x_{j+1}q_j
-\right]\\
- \left.-\frac\beta{\tilde x_1 y}\log\beta-\sum_{j=1}^{k-1}\frac\beta y(\tilde x_{j+1}^{-1}-\tilde x_j^{-1})\log\beta+(1-\beta y^{-1})\log\left[
- z/\beta
- \right]
-\right)
-\end{align*}Taking the limit we get
+The zero temperature limit is most easily obtained by putting $x_i=\tilde
+x_ix_k$ and $x_k=y/\beta$, $q_k=1-z/\beta$, which ensures the $\tilde x_i$,
+$y$, and $z$ have nontrivial limits. Inserting the ansatz and taking the limit
+we get
\begin{align*}
\lim_{\beta\to\infty}F=
-\frac12\left(yf(1)+zf'(1)+y\sum_{i=0}^{k-1}(\tilde x_i-\tilde x_{i+1})f(q_i)