summaryrefslogtreecommitdiff
path: root/frsb_kac-rice.tex
diff options
context:
space:
mode:
Diffstat (limited to 'frsb_kac-rice.tex')
-rw-r--r--frsb_kac-rice.tex135
1 files changed, 82 insertions, 53 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
index df30c38..316ffda 100644
--- a/frsb_kac-rice.tex
+++ b/frsb_kac-rice.tex
@@ -169,13 +169,13 @@ complexity in the ground state are
Here we review the equilibrium solution. \cite{Crisanti_1992_The, Crisanti_1993_The, Crisanti_2004_Spherical, Crisanti_2006_Spherical}
\begin{equation}
- \beta F=\frac12\lim_{n\to0}\frac1n\left(\beta^2\sum_{ab}f(Q_{ab})+\log\det Q\right)-\frac12\log S_\infty
+ \beta F=-\frac12\lim_{n\to0}\frac1n\left(\beta^2\sum_{ab}f(Q_{ab})+\log\det Q\right)-\frac12\log S_\infty
\end{equation}
$\log S_\infty=1+\log2\pi$.
\begin{align*}
\beta F=
- -\frac12\log S_\infty+
- \frac12\lim_{n\to0}\frac1n\left(\beta^2nf(1)+\beta^2\sum_{i=0}^kn(x_i-x_{i+1})f(q_i)
+ -\frac12\log S_\infty
+ -\frac12\lim_{n\to0}\frac1n\left(\beta^2nf(1)+\beta^2\sum_{i=0}^kn(x_i-x_{i+1})f(q_i)
+\log\left[
\frac{
1+\sum_{i=0}^k(x_i-x_{i+1})q_i
@@ -216,8 +216,8 @@ $\log S_\infty=1+\log2\pi$.
\begin{align*}
\beta F=
- -\frac12\log S_\infty+
- \frac12\left(\beta^2f(1)+\beta^2\sum_{i=0}^k(x_i-x_{i+1})f(q_i)
+ -\frac12\log S_\infty
+ -\frac12\left(\beta^2f(1)+\beta^2\sum_{i=0}^k(x_i-x_{i+1})f(q_i)
+q_0\left(1+\sum_{i=0}^k(x_i-x_{i+1})q_i\right)^{-1}\right. \\
+\frac1{x_1}\log\left[
1+\sum_{i=1}^{k}(x_i-x_{i+1})q_i-x_1q_0
@@ -230,8 +230,8 @@ $\log S_\infty=1+\log2\pi$.
$q_0=0$
\begin{align*}
\beta F=
- -\frac12\log S_\infty+
- \frac12\left(\beta^2f(1)+\beta^2\sum_{i=0}^k(x_i-x_{i+1})f(q_i)
+ -\frac12\log S_\infty
+ -\frac12\left(\beta^2f(1)+\beta^2\sum_{i=0}^k(x_i-x_{i+1})f(q_i)
+\frac1{x_1}\log\left[
1+\sum_{i=1}^{k}(x_i-x_{i+1})q_i
\right]\right.\\
@@ -243,7 +243,7 @@ $q_0=0$
$x_i=\tilde x_ix_k$, $x_k=y/\beta$, $q_k=1-z/\beta$
\begin{align*}
\beta F=
- -\frac12\log S_\infty+
+ -\frac12\log S_\infty-
\frac12\left(\beta^2f(1)+\beta^2(y\beta^{-1}-1)f(1-z\beta^{-1})+y\beta\sum_{i=0}^{k-1}(\tilde x_i-\tilde x_{i+1})f(q_i)\right. \\
+\frac\beta{\tilde x_1 y}\log\left[
y\sum_{i=1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z-yz/\beta
@@ -258,7 +258,7 @@ $x_i=\tilde x_ix_k$, $x_k=y/\beta$, $q_k=1-z/\beta$
\end{align*}
\begin{align*}
\lim_{\beta\to\infty}F=
- \frac12\left(yf(1)+zf'(1)+y\sum_{i=0}^{k-1}(\tilde x_i-\tilde x_{i+1})f(q_i)
+ -\frac12\left(yf(1)+zf'(1)+y\sum_{i=0}^{k-1}(\tilde x_i-\tilde x_{i+1})f(q_i)
+\frac1{\tilde x_1 y}\log\left[
y\sum_{i=1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z
\right]\right.\\
@@ -270,7 +270,7 @@ $x_i=\tilde x_ix_k$, $x_k=y/\beta$, $q_k=1-z/\beta$
\end{align*}
$F$ is a $k-1$ RSB ansatz with all eigenvalues scaled by $y$ and shifted by $z$. $\tilde x_0=0$ and $\tilde x_k=1$.
\begin{equation} \label{eq:ground.state.free.energy}
- \lim_{\beta\to\infty}F=\lim_{n\to0}\frac1n\frac12\left(nzf'(1)+y\sum_{ab}f(\tilde Q_{ab})+\frac1y\log\det(yz^{-1}\tilde Q+I)
+ \lim_{\beta\to\infty}F=-\lim_{n\to0}\frac1n\frac12\left(nzf'(1)+y\sum_{ab}f(\tilde Q_{ab})+\frac1y\log\det(yz^{-1}\tilde Q+I)
\right)
\end{equation}
@@ -370,45 +370,46 @@ The parameters:
\end{align}
\begin{equation}
- S
- =\mathcal D(\mu)+\hat\epsilon\epsilon+\lim_{n\to0}\frac1n\left(
- \mu\sum_a^nR_{aa}
- +\frac12\sum_{ab}\left[
- \hat\epsilon^2f(Q_{ab})+2\hat\epsilon R_{ab}f'(Q_{ab})
- -D_{ab}f'(Q_{ab})+R_{ab}^2f''(Q_{ab})
- \right]
- +\frac12\log\det\begin{bmatrix}Q&iR\\iR&D\end{bmatrix}
- \right)
+ \begin{aligned}
+ S
+ =\mathcal D(\mu)+\hat\epsilon\epsilon+\lim_{n\to0}\frac1n\left(
+ \mu\sum_a^nR_{aa}
+ +\frac12\sum_{ab}\left[
+ \hat\epsilon^2f(Q_{ab})+2\hat\epsilon R_{ab}f'(Q_{ab})
+ -D_{ab}f'(Q_{ab})+R_{ab}^2f''(Q_{ab})
+ \right] \right. \\ \left.
+ +\frac12\log\det\begin{bmatrix}Q&iR\\iR&D\end{bmatrix}
+ \right)
+ \end{aligned}
\end{equation}
-
\section{Replicated action}
-\begin{align*}
- \Sigma
- =-\epsilon\hat\epsilon+\lim_{n\to0}\frac1n\left(
- \sum_a\mu(F_{aa}-R_{aa})
- +\frac12\sum_{ab}\left[
- \hat\epsilon^2f(Q_{ab})+2\hat\epsilon R_{ab}f'(Q_{ab})
- +D_{ab}f'(Q_{ab})+R_{ab}^2f''(Q_{ab})-F_{ab}^2f''(Q_{ab})
- \right]\right.\\\left.
- +\frac12\log\det\begin{bmatrix}Q&-iR\\-iR&-D\end{bmatrix}
- -\log\det F
- \right)
-\end{align*}
-\[
- 0=\frac{\partial\Sigma}{\partial R_{ab}}
- =-\mu\delta_{ab}+\hat\epsilon f'(Q_{ab})+R_{ab}f''(Q_{ab})+\sum_c(R^2-DQ)^{-1}_{ac}R_{cb}
-\]
-\[
- 0=\frac{\partial\Sigma}{\partial D_{ab}}
- =\frac12 f'(Q_{ab})-\frac12\sum_c(R^2-DQ)^{-1}_{ac}Q_{cb}
-\]
+
+\begin{equation}
+ \begin{aligned}
+ S
+ =\mathcal D(\mu)+\hat\epsilon\epsilon+\lim_{n\to0}\frac1n\left(
+ \mu\sum_a^nR_{aa}
+ +\frac12\sum_{ab}\left[
+ \hat\epsilon^2f(Q_{ab})+2\hat\epsilon R_{ab}f'(Q_{ab})
+ -D_{ab}f'(Q_{ab})+R_{ab}^2f''(Q_{ab})
+ \right] \right. \\ \left.
+ +\frac12\log\det\begin{bmatrix}Q&iR\\iR&D\end{bmatrix}
+ \right)
+ \end{aligned}
+\end{equation}
+\begin{align}
+ 0&=\frac{\partial S}{\partial R_{ab}}
+ =\mu\delta_{ab}+\hat\epsilon f'(Q_{ab})+R_{ab}f''(Q_{ab})+\sum_c(DQ+R^2)^{-1}_{ac}R_{cb} \\
+ 0&=\frac{\partial S}{\partial D_{ab}}
+ =-\frac12 f'(Q_{ab})+\frac12\sum_c(DQ+R^2)^{-1}_{ac}Q_{cb}
+\end{align}
The second equation implies
-\[
- (R^2-DQ)^{-1}=Q^{-1}f'(Q)
-\]
+\begin{equation}
+ (DQ+R^2)^{-1}=Q^{-1}f'(Q)
+\end{equation}
\section{Replica ansatz}
@@ -416,19 +417,28 @@ The second equation implies
The reader who is happy with the ansatz may skip this section.
We may encode the original variables in a superspace variable:
- \begin{equation}
- \phi_i(1)= q_i(t) + \bar \theta a_i + a_i^\dag \theta + p_i \bar \theta \theta~,
- \end{equation}
+\begin{equation}
+ \phi_a(1)= s_a + \bar\eta_a\theta_1+\bar\theta_1\eta_a + \hat s_a \bar \theta_1 \theta_1
+\end{equation}
\begin{equation}
\begin{aligned}
-{\bf Q}(1,2)&=\frac 1 N \sum_i \phi_i(1) \phi_i (2) =
-Q_{ab} + (\bar \theta_2 - \bar \theta_1)
-\theta_2 R_{ab}
-+ \bar \theta_1 \theta_1 R_{ab} + \bar\theta_1\theta_1 \bar \theta_2 \theta_2 D_{ab} \\
+ \mathbb Q_{a,b}(1,2)&=\frac 1 N \phi_a(1)\cdot\phi_b (2) =
+Q_{ab} -i\left[\bar\theta_1\theta_1+\bar\theta_2\theta_2\right] R_{ab}
+ +(\bar\theta_1\theta_2+\theta_1\bar\theta_2)F_{ab}
+ + \bar\theta_1\theta_1 \bar \theta_2 \theta_2 D_{ab} \\
&+ \text{odd terms in the $\bar \theta,\theta$}~.
\end{aligned}
\label{Q12}
\end{equation}
+\begin{equation}
+ \overline{\Sigma(\epsilon,\mu)}
+ =\hat\epsilon\epsilon\lim_{n\to0}\frac1n\left[
+ \mu\int d1\sum_a^n\mathbb Q_{aa}(1,1)
+ +\int d2\,d1\,\frac12\sum_{ab}^n(1+\hat\epsilon\bar\theta_1\theta_1)f(\mathbb Q_{ab}(1,2))(1+\hat\epsilon\bar\theta_2\theta_2)
+ +\frac12\operatorname{sdet}\mathbb Q
+ \right]
+\end{equation}
+
Here $\theta_a$, $\bar \theta_a$ are Grassmann variables, and we denote the full set of coordinates
in a compact form as
$1= \theta_1 \overline\theta_1$, $d1= d\theta_1 d\overline\theta_1$, etc.
@@ -444,10 +454,29 @@ suggests that only the diagonal ${\bf Q}_{aa}$ depend on the $\theta$'s. This bo
to putting:
\begin{eqnarray}
Q_{ab}&=& {\mbox{ a Parisi matrix}}\nonumber\\
-R_{ab}&=R \delta_{ab}&\nonumber\\
-D_{ab}&=& D \delta_{ab}
+R_{ab}&=R_d \delta_{ab}&\nonumber\\
+D_{ab}&=& D_d \delta_{ab}
\end{eqnarray}
-Not surprisingly, this ansatz closes, as we shall see.
+Not surprisingly, this ansatz closes, as we shall see. That it closes under Hadamard products is simple.
+
+\begin{equation}
+ \begin{aligned}
+ \int d3\,\mathbb Q_1(1,3)\mathbb Q_2(3,2)
+ =\int d3\,(
+ Q_1 -i(\bar\theta_1\theta_1+\bar\theta_3\theta_3) R_1
+ +(\bar\theta_1\theta_3+\theta_1\bar\theta_3)F_1
+ + \bar\theta_1\theta_1 \bar \theta_3 \theta_3 D_1
+ ) \\ (
+ Q_2 -i(\bar\theta_3\theta_3+\bar\theta_2\theta_2) R_2
+ +(\bar\theta_3\theta_2+\theta_3\bar\theta_2)F_2
+ + \bar\theta_3\theta_3 \bar \theta_2 \theta_2 D_2
+ ) \\
+ =-i(Q_1R_2+R_1Q_2)
+ +Q_1D_2\bar\theta_2\theta_2+D_1Q_2\bar\theta_1\theta_1
+ -i\bar\theta_1\theta_1\bar\theta_2\theta_2R_1D_2
+ -i\bar\theta_1\theta_1\bar\theta_2\theta_2D_1R_2
+ \end{aligned}
+\end{equation}
\subsection{Solution}