summaryrefslogtreecommitdiff
path: root/frsb_kac-rice.tex
diff options
context:
space:
mode:
Diffstat (limited to 'frsb_kac-rice.tex')
-rw-r--r--frsb_kac-rice.tex66
1 files changed, 6 insertions, 60 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
index c322e8c..0896da4 100644
--- a/frsb_kac-rice.tex
+++ b/frsb_kac-rice.tex
@@ -1,13 +1,14 @@
\documentclass[fleqn]{article}
\usepackage{fullpage,amsmath,amssymb,latexsym,graphicx}
-\usepackage{appendix,xcolor}
+\usepackage{appendix}
+\usepackage[dvipsnames]{xcolor}
\usepackage[
colorlinks=true,
- urlcolor=purple,
- citecolor=purple,
- filecolor=purple,
- linkcolor=purple
+ urlcolor=MidnightBlue,
+ citecolor=MidnightBlue,
+ filecolor=MidnightBlue,
+ linkcolor=MidnightBlue
]{hyperref} % ref and cite links with pretty colors
\begin{document}
@@ -797,61 +798,6 @@ Integrating by parts,
&=\log[\hat\beta R_d^{-1}\lambda(q_{k-1})+1]+\frac{\hat\beta}{R_d}\int_{q_0^+}^{q_{k-1}}dq\,\frac1{\hat\beta R_d^{-1}\lambda(q)+1}
\end{align*}
-\section{ A motivation for the ansatz}
-
- We may encode the original variables in a superspace variable:
-\begin{equation}
- \phi_a(1)= s_a + \bar\eta_a\theta_1+\bar\theta_1\eta_a + \hat s_a \bar \theta_1 \theta_1
-\end{equation}Here $\theta_a$, $\bar \theta_a$ are Grassmann variables, and we denote the full set of coordinates
-in a compact form as $1= \theta_1 \overline\theta_1$, $d1= d\theta_1 d\overline\theta_1$, etc.
-The correlations are encoded in
-\begin{equation}
-\begin{aligned}
- \mathbb Q_{a,b}(1,2)&=\frac 1 N \phi_a(1)\cdot\phi_b (2) =
-Q_{ab} -i\left[\bar\theta_1\theta_1+\bar\theta_2\theta_2\right] R_{ab}
- +(\bar\theta_1\theta_2+\theta_1\bar\theta_2)F_{ab}
- + \bar\theta_1\theta_1 \bar \theta_2 \theta_2 D_{ab} \\
-&+ \text{odd terms in the $\bar \theta,\theta$}~.
-\end{aligned}
-\label{Q12}
-\end{equation}
-\begin{equation}
- \overline{\Sigma(\epsilon,\mu)}
- =\hat\beta\epsilon\lim_{n\to0}\frac1n\left[
- \mu\int d1\sum_a^n\mathbb Q_{aa}(1,1)
- +\int d2\,d1\,\frac12\sum_{ab}^n(1+\hat\beta\bar\theta_1\theta_1)f(\mathbb Q_{ab}(1,2))(1+\hat\beta\bar\theta_2\theta_2)
- +\frac12\operatorname{sdet}\mathbb Q
- \right]
-\end{equation}
-The odd and even fermion numbers decouple, so we can neglect all odd terms in $\theta,\bar{\theta}$.
-
-\cite{Annibale_2004_Coexistence}
-
-This encoding also works for dynamics, where the coordinates then read
-$1= (\bar \theta, \theta, t)$, etc. The variables $\bar \theta \theta$ and $\bar \theta ' \theta'$ play
-the role of `times' in a superspace treatment. We have a long experience of
-making an ansatz for replicated quantum problems, which naturally involve a (Matsubara) time. The dependence on this time only holds for diagonal replica elements, a consequence of ultrametricity. The analogy strongly
-suggests that only the diagonal ${\bf Q}_{aa}$ depend on the $\theta$'s. This boils down the ansatz \ref{ansatz}.
-Not surprisingly, and for the same reason as in the quantum case, this ansatz closes, as we shall see.For example, consider the convolution:
-
-\begin{equation}
- \begin{aligned}
- \int d3\,\mathbb Q_1(1,3)\mathbb Q_2(3,2)
- =\int d3\,(
- Q_1 -i(\bar\theta_1\theta_1+\bar\theta_3\theta_3) R_1
- +(\bar\theta_1\theta_3+\theta_1\bar\theta_3)F_1
- + \bar\theta_1\theta_1 \bar \theta_3 \theta_3 D_1
- ) \\ (
- Q_2 -i(\bar\theta_3\theta_3+\bar\theta_2\theta_2) R_2
- +(\bar\theta_3\theta_2+\theta_3\bar\theta_2)F_2
- + \bar\theta_3\theta_3 \bar \theta_2 \theta_2 D_2
- ) \\
- =-i(Q_1R_2+R_1Q_2)
- +Q_1D_2\bar\theta_2\theta_2+D_1Q_2\bar\theta_1\theta_1
- -i\bar\theta_1\theta_1\bar\theta_2\theta_2R_1D_2
- -i\bar\theta_1\theta_1\bar\theta_2\theta_2D_1R_2
- \end{aligned}
-\end{equation}
\end{appendix}